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Abstract. We prove the existence of a new 2-parameter family o∆ of em-

bedded triply periodic minimal surfaces of genus 3. The new surfaces share
many properties with classical orthorhombic deformations of Schwarz’ D sur-

face, but also exotic in many ways. In particular, they do not belong to

Meeks’ 5-dimensional family. Nevertheless, o∆ meets classical deformations in
a 1-parameter family on its boundary.

1. Introduction

This is the first of two papers dealing with new 2-dimensional families of embed-
ded triply periodic minimal surfaces (TPMS) of genus three whose 1-dimensional
“intersections” with the well-known Meeks family exhibit singularities in the moduli
space of TPMS.

In the past three decades, the classification of complete, embedded minimal
surfaces of finite topology in Euclidean space forms has largely been accomplished
for the smallest reasonable genus ([MPR98, LHM01, PRT05, MR05, PT07]). In
all these cases, the moduli space of these surfaces has been found to be a smooth
manifold.

In the case of triply periodic minimal surfaces, no such classification has been
found. For the lowest possible genus 3, there is an explicit 5-dimensional smooth
family described by Meeks [Mee90] that contains most of the then known examples,
with the notable exception of Schwarz’ H surfaces and Schoen’s Gyroid. Work of
Traizet [Tra08] implies that the H-surfaces belong to a second 5-dimensional family
for which no explicit description is known. Our other paper will explore that family.

In this paper, we construct a new 2-dimensional family of embedded triply pe-
riodic minimal surfaces of genus 3 that does not belong to the Meeks family but
whose closure meets the Meeks family in a 1-dimensional subset. More specifically,
the surfaces in this subset are bifurcation instances in the sense that, with the same
deformation of their lattices, they may deform either within a classical 2-parameter
Meeks family, or into a new 2-parameter non-Meeks family. Existence of the latter
is the focus of this paper.

In fact, all these surfaces can be seen as orthorhombic deformations of Schwarz’
D surface. Hence we begin with a description of the classical orthorhombic defor-
mations of D, which all belong to the Meeks family.

Consider an embedded minimal surface S inside an axis parallel box [−A,A] ×
[−B,B]×[0, 1] that solves the following partially free boundary problem: S satisfies
free boundary condition on the vertical planes x = ±A and y = ±B, and fixed
(Plateau) boundary condition on the horizontal segments {(x, 0, 0) | −A ≤ x ≤ A}
and {(0, y, 1) | −B ≤ y ≤ B}, and the intersection of ∂S with each face of the
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Figure 1.1. Fundamental Piece and Translational Fundamental Piece

box has at most one component. S is therefore a right-angled embedded minimal
hexagon. See Figure 1.1 (left) for an example.

Because the two horizontal segments are in the middle of the top and bottom
faces of the box, rotations about them and reflections in the lateral faces of the
box extend S to an embedded TPMS Σ̃. More specifically, Σ̃ is invariant under the
lattice Λ spanned by (4A, 0, 0), (0, 4B, 0) and (2A, 2B, 2). In the 3-torus R3/Λ, Σ =

Σ̃/Λ is a compact surface of genus 3. In Figure 1.1 (right) we show a translational

fundamental domain of Σ̃ nicely presented in a box. It consists of eight copies of S.

Remark 1.1. For crystallographers, the orthorhombic lattice spanned by (4A, 0, 0),
(0, 4B, 0) and (0, 0, 4) is probably more convenient. This is responsible for the letter

“o” in our naming. The quotient of Σ̃ by this lattice is a double cover of Σ, hence
of genus 5.

We use D to denote the set of all TPMS obtained in this way.

Figure 1.2. Plateau construction of oD surfaces

A well-known family of surfaces in D is the tD family of H. A. Schwarz, which
is a tetragonal deformation family of his famous D surface. They are obtained as
described above with A = B and S containing the vertical segment {(0, 0, z) | 0 ≤
z ≤ 1}. The same construction also applies when A 6= B, yielding an orthorhombic
deformation of Schwarz’ D surface, known as oDb in the literature to distinguish
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from another orthorhombic deformation family oDa; see [FK89, FH92]. In this
paper, we simply use oD in place of oDb.

An alternative (better known) construction of an oD surface starts with a box of
the same dimensions and then solves the Plateau problem for a polygonal contour
running along edges of the box, as shown in Figure 1.2. The Plateau solution is
unique and therefore shares the symmetries of the contour. In particular, it has
reflectional symmetries by vertical planes. To relate with the previous construction,
just divide the minimal surface into quarts by cutting along these planes, then
extend one of the quarts by rotating it about its vertical edge.

The main result of this paper is to confirm the existence of another 2-parameter
family in D.

Theorem 1.2. There exists a second 2-parameter continuous family o∆ in D,
lacking the vertical straight line of the oD surfaces.

The o∆ family, well hidden in the radiance of the famous oD family, is under-
standably unexpected. The second author confesses his complete bafflement and
initial disbelief when the first author provided him with evidence of o∆. In Figure
1.3 we compare oD and o∆ surfaces with the same lattice (the surfaces in this figure
actually have tetragonal lattices, hence belong to tD and t∆ subfamilies that we
will discuss in Section 6.)

Figure 1.3. Comparison of oD (dark) and o∆ (bright) surfaces
with the same lattice. These surfaces actually belong to the tD
and t∆ subfamily.
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The o∆ family is not merely a surprise. Its significance is revealed in the following
proposition.

Proposition 1.3. The surfaces in o∆ do not belong to the Meeks family. That is,
the branched values of the Gauss map of an o∆ surface do not form four antipodal
pairs. In fact, the only Meeks surfaces in D are the oD surface. However, the
closure o∆ intersects oD in a 1-parameter family of TPMS.

We now provide some context for the proposition.
For the purpose of this paper, a TPMS is a complete, embedded minimal surface

Σ̃ in Euclidean space R3 invariant under a lattice Λ of Euclidean translations. The
quotient Σ = Σ̃/Λ then is a compact Riemann surface in the 3-torus R3/Λ. The
lowest possible genus for a non-trivial TPMS is 3. In this case, the Gauss map of
Σ has degree 2, and the surface is therefore necessarily hyperelliptic.

The first examples of TMPS were given by H. A. Schwarz [Sch90] around 1867,
with explicit Weierstrass data for very symmetric cases. Schwarz understood that
the eight branched values of the Gauss map play a crucial role. More generally,
W. Meeks III [Mee90] explicitly constructed a family M of TPMS of genus 3. He
showed that if eight points on the sphere come in four antipodal pairs, then they
are the branched values of the Gauss map for two conjugate TPMS of genus 3. The
Meeks familyM, considered up to congruence and dilation, is a connected, smooth,
(real) 5-dimensional manifold, and includes almost all previously known examples.

Famous exceptions are the H surfaces of Schwarz, for which the branched values
are placed at the north pole, the south pole, and the vertices of a prism over an
equilateral triangle inside the sphere; and the Gyroid of A. Schoen [Sch70], whose
Gauss map has the same branched values as those of Schwarz’ P and D surfaces,
but does not belong to the Meeks family. We use N to denote the complement
of M in the set of all TPMS of genus 3. Since then, more examples in N have
been found, either as isolated examples or as 1-parameter families, and some of
them only numerically [FHL93, FH99, Wey06, Wey08]. Our 2-parameter family
o∆ is therefore an important step towards the understanding of non-Meeks TPMS
of genus 3.

Meeks’ result is extended into the following rigidity statement: In the neighbor-
hood of a non-degenerate TPMS, there is a bijection between TPMS and lattices
in R3; see [KPS14] for instance. Hence up to congruence and dilation, a non-
degenerate TPMS belongs (locally) to a 5-parameter family. Besides that, very
little is known about the structure of N . We would like to conjecture that N is,
like M, connected and smooth, but none of these is known.

There is evidence [FHL93, FH99, Wey06, Wey08] thatM and the closure N have
non-empty intersection. Proposition 1.3 provides the first concrete example of such
intersection in the form of a 1-dimensional family of TPMS. This is of considerable
importance for stability questions of TPMS.

A TPMS of genus 3 is called a bifurcation instance if there are non-congruent
deformations (bifurcation branches) of the TPMS with the same deformation of
the lattice. Koiso, Piccione and Shoda [KPS14] identified isolated bifurcation in-
stances among classical deformations of TPMS; see also [ES14, ES18]. They found
bifurcation branches for most of these bifurcation instances. But for three “exotic”
bifurcation instances, they only suggested that a bifurcation branch from them
would not be a “classical” TPMS.

The intersection o∆∩oD is a 1-parameter family of bifurcation instances. In par-
ticular, a 1-parameter subfamily of o∆, which we call t∆, has the same tetragonal
lattices as the tD family. The intersection t∆∩tD contains a single TPMS, denoted
by tD∗, which turns out to be one of the exotic bifurcation instances in [KPS14].
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We also find a bifurcation branch tΠ from the conjugate of tD∗, another exotic
bifurcation instance in Schwarz’ tP family. But tΠ is not the focus of this paper,
since it is nothing but a classical oPa deformation [FK89, FH92].

For sufficiently large A and B, the existence of o∆ surfaces is implied by results
of Traizet [Tra08], who constructed TPMS by opening catenoidal nodes among 2-
tori. The positions of the nodes have to satisfy a balance condition, formulated
in terms of elliptic functions, and a non-degeneracy condition. The Traizet limit
of o∆ was noted by the first author in an earlier experimental work [Che18]. He
used Brakke’s Surface Evolver [Bra92] to numerically deform the TPMS from near
the Traizet limit up to Schwarz’ tD family, and obtained the first images of t∆. In
particular, he observed that t∆ eventually intersects tD, but Surface Evolver fails
to converge near the intersection. This failure can now be explained by numeric
bifurcation.

Our paper is organized as follows:
In Section 2, we describe the Weierstrass data for surfaces in D, prove their

embeddedness, and formulate the period problem, depending on three real positive
parameters a, b and t. The case a = b corresponds to the oD surfaces, where the
period problem is automatically solved. In the case a 6= b, the period problem
becomes 1-dimensional but is rather complicated.

In Section 3 we show that, if a 6= b, the branched values of the Gauss map can
not be antipodal. This proves that D∩M = oD, and that any solution with a 6= b
(namely o∆) lies in N .

Section 4 is dedicated to the existence proof of o∆. We show that for any choice
of a 6= b, there is a value of t that solves the period problem. This is accomplished
through a careful asymptotic analysis of the period integrals. We also conjecture
the uniqueness of t based on numerical experiments.

To prove that oD ⊂M and the closure of o∆ ⊂ N have a non-empty intersection,
we consider in Section 5 a modified period problem that eliminates the trivial
solutions coming from oD. It turns out that this period problem can be solved
explicitly in terms of elliptic integrals.

In section 6 we consider the surfaces with tetragonal lattices. They are D surfaces
whose parameters satisfy ab = t. In this case, we obtain two 1-parameter families of
surfaces: tD ⊂ oD containing Schwarz’ D surface, and t∆ ⊂ o∆. The intersection
t∆ ∩ tD contains a single TPMS tD∗. As the existence of t∆ does not follow from
Section 4, we give an independent proof for this case using an extremal length
argument.

Acknowledgements. The first author thanks his newborn daughter for keeping
him awake through the nights, which helped noticing the t∆ family.

The second author thanks his teenage daughter for keeping him sleepless as well,
thus providing time to work on this paper.

We are grateful to the anonymous referee for suggestions and corrections after
carefully reading a previous version of the manuscript.

2. Weierstrass Data and Period Problem

We parameterise a surface in D with a Weierstrass representation defined on the
upper half plane such that the real axis is mapped to the boundary of the hexagon
S. Let the vertices of S be labeled by V1, V2, · · · , V6 as in Figure 1.1 (left). Denote
the preimage of Vk by vk ∈ R, and assume that v1 < v2 < . . . < v6.

Given a D surface, denote by dh its height differential and by G its Gauss map.
Let φ1 := dh ·G and φ2 := dh/G. The assumed boundary symmetries of the surface
imply that Φj : z 7→

∫ z
φj (j = 1 or 2) map the upper half plane to “right angled”
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Figure 2.1. Images of a fundamental piece under Φ1 and Φ2.

Euclidean hexagons. The interior angle is 270◦ at Φ1(v5) and Φ2(v2). Indeed, the
Gauss map is vertical at V2 and V5, hence v2 and v5 are respectively the pole and
the zero of G. Interior angles at all other vertices are 90◦; see Figure 2.1.

Such maps are given by Schwarz-Christoffel maps. More specifically, we have

φ1 := ρ (z − v1)−1/2(z − v2)−1/2(z − v3)−1/2(z − v4)−1/2(z − v5)+1/2(z − v6)−1/2 dz,

φ2 := −1

ρ
(z − v1)−1/2(z − v2)+1/2(z − v3)−1/2(z − v4)−1/2(z − v5)−1/2(z − v6)−1/2 dz,

dh := −i (z − v1)−1/2 × (z − v3)−1/2(z − v4)−1/2 × (z − v6)−1/2 dz.

Here, the real positive Lopéz-Ros factor ρ determines scaling of the image domains.
The Gauss map is G := iρ(z − v2)−1/2(z − v5)+1/2.

Proposition 2.1. Up to congruence and dilation, the image of the upper half plane
under the map

(2.1) z 7→ Re

∫ z

(ω1, ω2, ω3) = Re

∫ z (1

2
(φ2 − φ1),

i

2
(φ2 + φ1), dh

)
is almost the fundamental hexagon of a D surface in the following sense: The inter-
vals v1v2, v2v3, v4v5 and v5v6 are mapped to planar symmetry curves in the lateral
faces of an axis parallel box. The intervals v6v1 and v3v4 are mapped, respectively,
to straight segments parallel to the x and y axis, but not necessarily in the middle,
in the bottom and top faces of the box.

Proof. Note that the integrand in φ1 (resp. φ2) is real positive (resp. negative)
for z > v6. This implies that the image of the segment v6v1 under the Schwarz-
Christoffel map Φ1 (resp. Φ2) is horizontal rightward (resp. leftward), as in Figure
2.1.

The Schwarz-Christoffel maps Φj and z 7→
∫ z
dh can be continued by reflection

across any edge to the lower half plane, inducing symmetries of the minimal surface.
We now determine what kind of symmetry is induced on each edge.

For that, we only carry out a detailed analysis on the edge v6v1. The integrands
in both φj are real on v6v1, hence their continuations across this edge are given by

φj(z). Meanwhile, the integrand in dh is imaginary on v6v1, so its continuation is

given by −dh(z). Therefore, after crossing v6v1, Reω1 remains unchanged while
Reω2 and Reω3 change sign. This means that the surface is extended by a rotation
about a straight line parallel to the x-axis.

Similar analysis on the other edges then prove that the image of the upper half
plane under (2.1) has the claimed boundary curves. Note that the surface obtained
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is free of singularities. Indeed, the metric is regular away from vk, and the exponents
at vk guarantee a smooth extension. �

We now study the condition for the two horizontal segments to lie in the middle
of the top and the bottom faces of the box. To this end, we introduce notations for
the edge lengths of the Euclidean hexagons

Ik :=

∣∣∣∣∫ vk+1

vk

φ1

∣∣∣∣ , Jk :=

∣∣∣∣∫ vk+1

vk

φ2

∣∣∣∣
for 1 ≤ k ≤ 5. These are positive real numbers that depend analytically on the
parameters v1, . . . , v6 and ρ.

Proposition 2.2. The image of the upper half plane under the Weierstrass rep-
resentation (2.1) is the fundamental hexagon of a surface in D if and only if the
following period conditions are satisfied:

(2.2)
I1 + I5 = J1 + J5

I2 + I4 = J2 + J4

Proof. The bottom segment V6V1 lies in the middle of the bottom face if and only
if

Re

∫ v2

v1

ω2 = Re

∫ v6

v5

ω2 .

This is equivalent to

Im

∫ v2

v1

(φ2 + φ1) = Im

∫ v6

v5

(φ2 + φ1) .

Observe on v1v2 that the integrand in φ1 (resp. φ2) is positive (resp. negative)
imaginary, and on v5v6 that the integrand in φ1 (resp. φ2) is negative (resp. positive)
imaginary. So the equation above can be written as

I1 − J1 = J5 − I5,
which proves the first period condition. The second follows analogously. �

We can eliminate ρ by taking the quotient of the two equations, therefore:

Corollary 2.3. If

QI :=
I1 + I5
I2 + I4

=
J1 + J5
J2 + J4

=: QJ

or, equivalently, if

(2.3) Q := QI −QJ =
I1 + I5
I2 + I4

− J1 + J5
J2 + J4

= 0

for some choice of v1, . . . , v6, then ρ ∈ R>0 can be uniquely adjusted so that the
period conditions (2.2) are satisfied.

Thus we have expressed the period condition as a single equation Q = 0, where
Q depends on six parameters v1, . . . , v6. The number of parameters can be reduced
to three after a normalization by Möbius transformations. More specifically, we can
assume

v1 = −t, v2 = −a, v3 = −1, v4 = 1, v5 = b, v6 = t

with −t < −a < −1 < 1 < b < t. We also assume that a ≤ b. If it is not the case,
we may simply switch a and b; this only exchanges Ik and J6−k, 1 ≤ k ≤ 5, up to
the scaling ρ, hence leaves Q invariant.

We note two special cases.
If a = b, the period conditions (2.2) are satisfied automatically with ρ = 1. In

this case, the involution z 7→ −z induces an order-2 rotation of the surface about a
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vertical axis. This can be seen by noting that ω1 and ω2 change sign but ω3 keeps
sign under this involution. Indeed, on the imaginary axis (fixed by the involution),
φ1 and φ2 are conjugate and dh is real. Hence the positive imaginary axis is mapped
by the Weierstrass representation (2.1) to the vertical straight segment between the
middle points of V3V4 and of V6V1, which serves as the axis of the order-2 rotation.
This shows that the surface is in oD.

If ab = t, we will see in Section 6 that the period conditions are satisfied with
QI = QJ = 1 and ρ4 = a/b. In this case, the involution ι : z 7→ −t/z induces
an order-2 orientation-preserving rotation of the surface around a horizontal axis,
because

ι∗dh = −dh and G(ι(z))G(z) = i.

This rotation exchanges Vk with Vk+3, 1 ≤ k ≤ 3. In particular, the segments V6V1
and V3V4 must have the same length, implying that the bounding box has a square
base. The unique fixed point of the involution, namely i

√
t, is mapped to the fixed

point of the rotation. We will consider this case in detail in Section 6.

Proposition 2.4. The minimal hexagons S in D are embedded. Consequently, the
triply periodic minimal surfaces generated by extending across symmetry lines are
embedded as well.

Proof. Denote the projection onto the xz-plane by $, and let V ′i = $(Vi). We will
prove (refering to Figure 1.1 (left)):

(1) The boundary of S is a graph over a simple curve γ in the xz-plane, except
for the straight segment V3V4 which is parallel to the y-axis. Thus γ bounds
a simply connected (open) domain Ω.

To see this, note that the Gauss map G := iρ(z − v2)−1/2(z − v5)+1/2

is horizontal (i.e. perpendicular to the y-direction) along the segments
V2V3V4V5 and strictly monotone. This implies that the arcs V ′2V

′
3 and

V ′4V
′
5 of γ are simple, disjoint, and lie in the rectangle [−A,A]× [0, 1]. The

remaining segments V ′5V
′
6 , V ′6V

′
1 and V ′1V

′
2 are straight segments on the

boundary of that rectangle.
(2) The projection $(S) lies within Ω.

To see this, assume the opposite. Take a boundary point of $(S) that
does not lie in Ω. By (the contraposition of) the Implicit Function Theorem,
its preimage on the S has a horizontal normal (parallel to the xz-plane).
By the formula for the Gauss map, the only points with horizontal normal
occur on the boundary of S, a contradiction.

(3) The projection $ restricted to the interior of S has the unique path and
homotopy lifting properties.

To see this, we again use that the interior of S has no point with horizon-
tal normal. The claim follows from the Implicit Function Theorem, applied
in the compact region where the curve (or homotopy) resides.

Then it follows that the interior of S is a graph over Ω: Otherwise, take a curve
on S that connects two distinct points in $−1(p), p ∈ Ω. Its projection onto Ω
is closed in Ω and can be retracted onto p within a compact subset of Ω. By the
unique homotopy lifting property, the endpoints of the lifted curves stay the same,
contradicting the assumption that they are two distinct points in $−1(p). �

3. Branched Values of the Gauss Map

To locate the branched points of the Gauss map, we use the following simple
observation:

Lemma 3.1. At every orthogonal intersection of a planar symmetry curve and a
straight line on a minimal surface, the Gauss map has a branched point.
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Proof. At points on the straight line that are symmetric with respect to the sym-
metry plane, the Gauss map takes the same value. Hence it cannot be single valued
in a neighborhood of the intersection point. �

We now show

Theorem 3.2. The branched values of the Gauss map of a surface in D are an-
tipodal if and only if a = b.

Proof. By the Lemma, the Gauss map has branched points at V1, V3, V4 and V6.
On a translational fundamental domain, each of these points occurs twice, giving
eight branched points as expected.

Recall that the stereographically projected Gauss map is given by

G(z) = iρ(z + a)−1/2(z − b)+1/2.

We then compute the branched values explicitly as

±G(+1) = ∓ρ
√
b− 1

a+ 1
, ±G(−1) = ∓ρ

√
b+ 1

a− 1
,

±G(+t) = ±iρ
√
t− b
t+ a

, ±G(−t) = ±iρ
√
t+ b

t− a
.

Recall that −t < −a < −1 < 1 < b < t, so the expressions under the square roots
are all positive real. We then see that they lie on the real and imaginary axis,
respectively, which helps matching them in possible antipodal pairs. Recall that,
after stereographic projection, the antipodal point of z is −1/z.

Assume that the branched values do occur in antipodal pairs and, for the sake of
contradiction, that a 6= b. First note that G(+1) and −G(+1) cannot be antipodal.
Otherwise, G(−1) and −G(−1) must also be antipodal. Then they must have the
same norm, i.e. b−1

a+1 = b+1
a−1 , forcing a+ b = 0 which violates our assumption. Thus

the only possibility is that ±G(−1) and ±G(+1) are antipodal, with two possible
choices of signs. Either choice implies that

ρ4 =
a2 − 1

b2 − 1
.

The same analysis on ±G(±t) leads to

ρ4 =
t2 − a2

t2 − b2
.

Combining the two equations for ρ4 shows, after a brief computation, that either
t = 1 or a = b. The contradiction with our assumptions proves the “only if”.

For the “if” part, assume that a = b. Then we find the branched points become
antipodal (only) with ρ = 1. More specifically, we have

±G(+1) = ∓
√
a− 1

a+ 1
, ±G(−1) = ∓

√
a+ 1

a− 1
,

±G(+t) = ±i
√
t− a
t+ a

, ±G(−t) = ±i
√
t+ a

t− a
.

Geometrically, these points on the unit sphere are vertices of two axis parallel
rectangles in the planes x = 0 and y = 0, respectively. Remarkably, an image of
two such rectangles already appears in Figure 44 of the Nachtrag of Schwarz’ paper
“Bestimmung einer speciellen Minimalfläche” from 1867. �
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Figure 4.1. Numerical plot of the solution set of Q(a, b; t) = 0.
The vertical plane in gray is the set of trivial solutions with a = b
corresponding to the oD surfaces. The other surface is the set of
non-trivial solutions corresponding to the o∆ surfaces.

We note that in the case a = b the branched values lie at the vertices of a cube if
and only of a2 = b2 = t = 3. This is the case of the classical D surface of Schwarz.

4. Existence of Non-Trivial Solutions

Recall that 1 < a ≤ b < t, and the periodic condition (2.3) as we copy below

Q(a, b; t) =
I1 + I5
I2 + I4

− J1 + J5
J2 + J4

= 0.

The quantity Q is our focus in the remaining of this paper. From now on, we will
ignore the Lopéz-Ros factor ρ in our calculations, since Q is independent of this
factor.

We now prove the main theorem of this paper.

Theorem 4.1. If a = b, the period condition (2.3) is solved for any choice of t.
If a < b, then there exists a value of t that solves the period condition (2.3).

The solution set of Q(a, b; t) = 0 is numerically plotted in Figure 4.1. The case
a = b, shown here as a vertical plane in gray, has been discussed in Section 2. The
case a < b, as well as our main theorem, follows from the continuity of Q in t, and
the following proposition.

Proposition 4.2. If 1 < a < b < t then

lim
t→b+

Q(a, b; t) > 0,(4.1)

lim
t→+∞

Q(a, b; t) = −∞.(4.2)

The remainder of this section is devoted to the proof of this proposition.

We begin by analyzing the limit t→ b+.

Proof of (4.1). We can evaluate the period integrals explicitly. Recall that, if p < q,
we have ∫ q

p

√
1

(q − z)(z − p)
dz = π,

∫ q

p

√
z − p
q − z

dz =
q − p

2
π.

By the Mean Value Theorem for integrals, we have

lim
t→b+

I1(a, b; t) = lim
t→b+

∫ −a
−t

1√
(t2 − z2)(z2 − 1)

√
b− z
−a− z

dz = C

∫ b

a

√
1

(b− z)(z − a)
dz,
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where C = 1/
√
c2 − 1 for some c ∈ [a, t]. So this limit is finite and non-zero.

Similarly,

lim
t→b+

I2(a, b; t) = C

∫ a

1

√
1

(a− z)(z − 1)
dz,

lim
t→b+

J1(a, b; t) = C

∫ b

a

√
z − a
b− z

dz, lim
t→b+

J2(a, b; t) = C

∫ a

1

√
z − 1

a− z
dz,

lim
t→b+

I4(a, b; t) = C

∫ b

1

√
1

z − 1
dz, lim

t→b+
J5(a, b; t) = C lim

t→b+

∫ t

b

√
1

(t− z)(z − b)
dz

are all finite and non-zero. Here C denote any finite positive number. On the other
hand,

lim
t→b+

I5(a, b; t) = C lim
t→b+

∫ t

b

√
z − b
t− z

dz = 0

and

lim
t→b+

J4(a, b; t) ≥ C lim
t→b+

∫ b

1

√
1

(t− z)(b− z)
dz

diverges to infinity. Consequently, as t→ b+, QI = (I1 + I5)/(I2 + I4) has a finite
and non-zero limit, while QJ = (J1 + J5)/(J2 + J4)→ 0, hence limt→b+Q > 0. �

Now we turn to the limit t→∞, which is more amusing.

Proof of (4.2). For the periods in the denominators, we note that

lim
t→∞

t · I2(a, b; t) =

∫ −1
−a

√
1

z2 − 1

√
b− z
a+ z

dz,

lim
t→∞

t · J2(a, b; t) =

∫ −1
−a

√
1

z2 − 1

√
a+ z

b− z
dz,

lim
t→∞

t · I4(a, b; t) =

∫ b

1

√
1

z2 − 1

√
b− z
a+ z

dz,

lim
t→∞

t · J4(a, b; t) =

∫ b

1

√
1

z2 − 1

√
a+ z

b− z
dz

are all finite. We now show that

(4.3) lim
t→∞

t · (I2 + I4) > lim
t→∞

t · (J2 + J4),

or equivalently,
lim
t→∞

t · (I2 − J2) > lim
t→∞

t · (J4 − I4).

We prove this by considering the functions

f(a, b) = lim
t→∞

t · (I2 − J2) =

∫ a

1

2z − a+ b√
(z2 − 1)(a− z)(b+ z)

dz,

g(a, b) = lim
t→∞

t · (J4 − I4) =

∫ b

1

2z + a− b√
(z2 − 1)(a+ z)(b− z)

dz,

and show that f(a, b) > g(a, b) for all 1 < a < b. Note that f(a, b) = g(b, a). Since

∂

∂b
f(a, b) =

∫ a

1

a+ b√
(z2 − 1)(a− z)(b+ z)3

dz > 0,

f is monotone increasing in its second argument for 1 < a < b. Then g is monotone
increasing in its first argument. Note also that f(a, a) = π is a constant. Hence

f(a, b) > f(a, a) = f(b, b) = g(b, b) > g(a, b),
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which finishes the proof of (4.3).
The periods in the numerators are more delicate to deal with, as they have

logarithmic asymptotics. For instance,

t · J5(a, b; t) =

∫ t

b

t√
t2 − z2

√
z + a

z − b

√
1

z2 − 1
dz

>

∫ t

b

t√
t2 − z2

1

z
dz

= log

√
t2 − b2 + t

b
,(4.4)

hence t · J5(a, b; t) diverges to +∞ as t→∞.
Fortunately, the integrals I1 and J1 (and I5 and J5) have the same logarith-

mic singularities. By the dominated convergence theorem, we obtain the following
estimates:

(4.5)

lim
t→∞

t · (I1 − J1) = lim
t→∞

∫ −a
−t

t(a+ b)√
(t2 − z2)(z2 − 1)(b− z)(−a− z)

dz

=

∫ −a
−∞

a+ b√
z2 − 1

√
b− z

√
−a− z

dz,

lim
t→∞

t · (I5 − J5) = lim
t→∞

∫ t

b

−t(a+ b)√
t2 − z2

√
z2 − 1

√
z − b

√
z + a

dz

=

∫ ∞
b

−a− b√
z2 − 1

√
z − b

√
z + a

dz.

Note that they are finite and non-zero.
Finally, we write

Q(a, b; t) =
t(I1 − J1) + t(I5 − J5)

tI2 + tI4
+ t(J1 + J5)

[ 1

tI2 + tI4
− 1

tJ2 + tJ4

]
.

The part in the square bracket is negative by (4.3). As t→∞, the first fraction is
bounded by (4.5), and J5 → +∞. This then concludes the proof of the proposition.

�

Before ending this section, we propose the following uniqueness conjecture based
on numeric experiments:

Conjecture 4.3. If a < b, then there exists a unique t that solves the period
condition (2.3).

5. Intersection with the Meeks-Locus

By definition, the two families oD ⊂M and o∆ ⊂ N are disjoint in D. However,
we will show in this section that the closure o∆ intersects oD, and give an explicit
description of the intersection in terms of elliptic integrals. This result is not strictly
needed for this paper, but gives insight into the nature of the bifurcation locus.

To make this precise, we use on D the topology induced by the space of possible
Weierstrass data, which are determined by the four real parameters a, b, t and ρ.
Clearly, the convergence of Weierstrass data implies the locally uniform convergence
of the minimal surfaces.

The goal is to determine the intersection of the Meeks locus

oD = {(a, b, t) : Q(a, b; t) = 0, a = b,−t < −a < −1 < 1 < b < t}
with the closure of the non-Meeks locus

o∆ = {(a, b, t) : Q(a, b; t) = 0, a 6= b,−t < −a < −1 < 1 < b < t}.
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The idea is to divide the function Q(a, b; t) by b− a and take the limit for a→ b
to eliminate solutions in the Meeks locus. We claim:

Theorem 5.1. The intersection o∆ ∩ oD is described by the equation

(5.1) K̄(m1)E(m2) + Ē(m1)K(m2) = K̄(m1)K(m2),

where

K(m) =

∫ π/2

0

1√
1−m sin2(θ)

dθ,

E(m) =

∫ π/2

0

√
1−m sin2(θ) dθ

are complete elliptic integrals of the first and the second kind, K̄(m) = K(1 −m)
and Ē(m) = E(1−m) are the associated elliptic integrals, and the moduli

m1 =
a2 − 1

t2 − 1
, m2 =

t2

a2
a2 − 1

t2 − 1
.

Note that 0 < m1 < m2 < 1.

Remark 5.2. It is interesting to notice the similarity of (5.1) with the Legendre
relation K̄(m)E(m) + Ē(m)K(m)− K̄(m)K(m) = π/2.

Before we sketch the technical proof, we note that the function Q can be extended
to a holomorphic function of its arguments a, b and t for a near b. To see this, note
that the integrand of each of the integrals Ik and Jk used in the definition of Q
can be adjusted by multiplication with a constant factor eit so that the absolute
values are not necessary. The square roots of the integrands cause a potential
multivaluedness when the roots −t,−a, b and t are close to each other, which is
not the case for a near b. As Q(a, a, t) = 0, this implies that also Q̃ extends to a

holomorphic function of its arguments. In particular, the extension of Q̃ for real
arguments is real analytic.

The theorem follows from the following proposition:

Proposition 5.3. The function

Q̃(a, b; t) =
1

b− a
Q(a, b; t)

extends analytically to a = b by

Q̃(a, a; t) =
a(t2 − 1)

(a2 − 1)(t2 − a2)

K̄(m1)K(m2)− K̄(m1)E(m2)− Ē(m1)K(m2)

K(m2)2
.

Remark 5.4. Technical details in the following proof are omitted. The integrals we
need can all be evaluated in terms of the complete elliptic integrals of the first and
the second kind. Integral tables in [BF71] have been very helpful for this purpose,
especially after a well-known computer algebra system failed us here.

Proof. With the help of the integral tables in [BF71], we obtain the following explicit
evaluation of the periods.

(I1 + I5)(a, a; t) = (J1 + J5)(a, a; t) =
2K̄(m1)√
t2 − 1

,

(I2 + I4)(a, a; t) = (J2 + J4)(a, a; t) =
2K(m2)√
t2 − 1

.
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Then we evaluate the derivatives

I ′k(a, a; t) =
∂

∂b

∣∣∣
a=b

Ik(a, b, t), J ′k(a, a; t) =
∂

∂b

∣∣∣
a=b

Jk(a, b, t),

and obtain

(I ′2 + I ′4)(a, a; t) =
K(m2)

a
√
t2 − 1

, (I ′1 + I ′5)(a, a; t) = 0,

(J ′1 + J ′5)(a, a; t) =
2aK̄(m1)√

t2 − 1(t2 − a2)
− 2aĒ(m1)

√
t2 − 1

(a2 − 1)(t2 − a2)
,

(J ′2 + J ′4)(a, a; t) =
K(m2)

a
√
t2 − 1

− 2aK(m2)√
t2 − 1(a2 − 1)

+
2aE(m2)

√
t2 − 1

(a2 − 1)(t2 − a2)
.

Finally, by L’Hôpital,

(5.2) lim
a→b

1

b− a
Q(a, b; t) =

∂Q

∂b

∣∣∣
a=b

=
a(t2 − 1)

(a2 − 1)(t2 − a2)

K̄(m1)K(m2)− K̄(m1)E(m2)− Ē(m1)K(m2)

K(m2)2
.

�

6. The Tetragonal Case

We denote by T surfaces in D with tetragonal lattice. That is, their unit cells are
prisms over squares. We have seen that this occurs when ab = t. Again, we have
the classical family tD = oD ∩ T when a = b =

√
t. The final specialization arises

when t = 3. In this case, all diagonals and midpoint bisectors of the embedded
minimal hexagon are straight lines, and we have the classical D surface.

In this section we will show that t∆ = o∆∩T is non-empty and, in fact, contains a
1-parameter family of surfaces meeting tD on its boundary. More specifically, these
surfaces are characterized by ab = t, hence they all admit a conformal involution,
that exchanges Vk with Vk+3, 1 ≤ k ≤ 3.

Lemma 6.1. When ab = t, the period condition is solved if and only if I1 + I5 =
I2 + I4, in which case ρ4 = a/b.

Proof. The assumption t = ab implies that

Ik = ρ2
√
b

a
Jk+3, and Jk =

1

ρ2

√
a

b
Ik+3

for k = 1, 2, 3. Therefore

QI =
I1 + I5
I2 + I4

=
J2 + J4
J1 + J5

= Q−1J .

Hence Q = QI −QJ = 0 implies that QI = 1. �

We use this lemma to construct right angled hexagons that solve the period
problem.

Begin with an axis parallel rectangle R of size 1 × A, where 1 < A < 2 is the
height; see Figure 6.1. Draw a line from the top left vertex of R in the 45◦ south-
east direction. Choose a point p on this line in the lower half of R (possible because
A < 2), and use it as the bottom right vertex of a smaller rectangle R′ with the
same symmetries. Cut the rectangular annulus between R and R′ into four along
the symmetry lines. The top right component is a right angled hexagon that solves
the period problem.
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Its conformal type, however, is still too general. It needs to have a holomorphic
involution permuting the edges.

Γ2

Γ1

Figure 6.1. Existence Proof for t∆

Theorem 6.2. For any choice of 1 < A < 2, there is a choice of p so that the
hexagon has a conformal involution.

Proof. The proof uses an extremal length argument.
Consider the curve families Γ1 and Γ2 connecting edges as in Figure 6.1. These

families are obtained from each other by the topological order 2 rotation. So in a
conformally correct hexagon, they need to have the same extremal length.

Vice versa, we claim that if extΓ1 = extΓ2 then the hexagon has a conformal
involution. To see this, we map the hexagon to the upper half plane by the inverse
of the Schwarz-Christoffel map z 7→

∫ z
φ1. The hexagon vertices Vi are mapped to

real numbers vi, and the curve family Γ1 is mapped to the curves family connecting
the edge v1v2 with the edge v5v6. Therefore its extremal length is that of the
conformal rectangle v1v2v5v6, and thus determines the cross ratio of these four
points. Similarly, the extremal length of Γ2 determines the cross ratio of the four
points v2v3v4v5. If we normalize the vi as before, the equality of these cross ratios

(a+ t)(b+ t)

2t(a+ b)
=

(a+ 1)(b+ 1)

2(a+ b)

implies that ab = t, so the hexagon has indeed a conformal involution.
Thus we have to show that we can adjust the position of p so that the two

extremal lengths are equal. Note that moving p to the left will pinch the vertical
edge V5V6, while moving p to the right will pinch the horizontal edge V6V1. This
shows that the extremal length of Γ1 will vary between infinity and 0. On the other
hand, during this variation, the extremal length of Γ2 stays bounded away from 0
and infinity. Hence there must be a p for which extΓ1 = extΓ2. �

Note that the tD family corresponds to the case when both rectangles degenerate
to squares.



16 HAO CHEN AND MATTHIAS WEBER

Remark 6.3. In the tetratonal case ab = t, the substitution ζ = z − t/z allows us
to express the Ik’s in terms of the complete elliptic integral K(µ) with complex
modulus

µ =
(1 + a)(1− b)

2

(
√
t− i)2

(t− 1)

1

(
√
a+ i

√
b)2

.

Then the period condition in Lemma 6.1 is equivalent to

cot
(

arg
K(µ) + iK ′(µ)√

b− i
√
a

)
=

√
b−
√
a√

b+
√
a
.

The intersection with tD can be determined explicitly using the equation from
Section 5. Note that for a = b =

√
t, we have

m = m2 = 1−m1 =
a2

1 + a2
.

Simplifying (5.1) shows that the intersection occurs when

2E(m) = K(m).

This is solved numerically with a = a∗ ≈ 2.17966. We use tD∗ to denote the surface
with parameters a = b =

√
t = a∗. In Figure 6.2 we compare Schwarz’ D surface,

the most symmetric surface in the tD family, with the surface tD∗ at the junction
of tD and t∆.

Figure 6.2. Schwarz’ D and the unstable tD∗ surface

The Gauss map of the tD∗ surface has eight branched values at ±α±1 and ±α±1i,
where α =

√
(a∗ − 1)/(a∗ + 1). They are the eight roots of z8 +kz4 + 1 = 0, where

k = α−4 + α4 =
(a∗ − 1)2

(a∗ + 1)2
+

(a∗ + 1)2

(a∗ − 1)2
≈ 7.40284

This is precisely the value calculated by Koiso, Piccione and Shoda [KPS14] for a
bifurcation instance in the tD family. An explicit bifurcation branch from tD∗ was
then missing, but now provided by the t∆ family.

Remark 6.4. Surprisingly, numerical computations show that, near the bifurcation
point, t∆ surfaces have actually smaller area than the corresponding tD surfaces
with the same lattice.
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The conjugate of tD∗, denoted by tP∗, was identified in [KPS14] as a bifurcation
instance in the tP family. We also find a bifurcation branch from tP∗, denoted by
tΠ. As one deforms the tetragonal lattice, the horizontal handles deform uniformly
along the tP branch. But along the tΠ branch, the handles in the x direction
shrink while the handles in the y direction expand. The tΠ family turns out to
be a subfamily of oPa, a 2-parameter orthorhombic deformation family of Schwarz
P surface. Since oPa ⊂ M, tΠ is less interesting for understanding non-Meeks
surfaces, hence not a focus of the current paper.

References

[BF71] Paul F. Byrd and Morris D. Friedman. Handbook of elliptic integrals for engineers and

scientists. Die Grundlehren der mathematischen Wissenschaften, Band 67. Springer-

Verlag, New York-Heidelberg, 1971. Second edition, revised.
[Bra92] Kenneth A. Brakke. The surface evolver. Experiment. Math., 1(2):141–165, 1992.

[Che18] Hao Chen. Minimal twin surfaces. Exp. Math., 2018. online first.

[ES14] Norio Ejiri and Toshihiro Shoda. On a moduli theory of minimal surfaces. In Prospects of
differential geometry and its related fields, pages 155–172. World Sci. Publ., Hackensack,

NJ, 2014.

[ES18] Norio Ejiri and Toshihiro Shoda. The Morse index of a triply periodic minimal surface.
Differential Geom. Appl., 58:177–201, 2018.

[FH92] Andrew Fogden and Stephen T. Hyde. Parametrization of triply periodic minimal sur-
faces. II. regular class solutions. Acta Cryst. Sect. A, 48(4):575–591, 1992.

[FH99] Andrew Fogden and Stephan T. Hyde. Continuous transformations of cubic minimal

surfaces. The European Physical Journal B-Condensed Matter and Complex Systems,
7(1):91–104, 1999.

[FHL93] Andrew Fogden, M. Haeberlein, and Sven Lidin. Generalizations of the gyroid surface.

J. Phys. I, 3(12):2371–2385, 1993.
[FK89] Werner Fischer and Elke Koch. Genera of minimal balance surfaces. Acta Cryst. Sect.

A, 45(10):726–732, 1989.

[KPS14] Miyuki Koiso, Paolo Piccione, and Toshihiro Shoda. On bifurcation and local rigidity
of triply periodic minimal surfaces in R3, 2014. preprint, arXiv:1408.0953.

[LHM01] Hippolyte Lazard-Holly and William H. Meeks, III. Classification of doubly-periodic

minimal surfaces of genus zero. Invent. Math., 143(1):1–27, 2001.
[Mee90] William H. Meeks, III. The theory of triply periodic minimal surfaces. Indiana Univ.

Math. J., 39(3):877–936, 1990.
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