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Abstract. The node-opening technique developed by Traizet has been very useful in
constructing minimal surfaces. In this paper, we use the technique to construct families
of maximal immersions in Lorentz space that are embedded outside a compact set. Each
family depends on a real parameter t. The surfaces look like horizontal planes connected
by small necks that shrink to singular points as t → 0. The limit positions of the necks
must satisfy a balance condition, which turns out to be exactly the same for maxfaces
and for minimal surfaces. By simply comparing notes, we obtain a rich variety of new
maxfaces with high genus and arbitrarily many space-like ends. Among them are the
Lorentzian Costa–Hofmann–Meeks surfaces. Non-planar complete maximal immersions
must have singularities. We will analyse the singularity structure. For sufficiently small
non-zero t, the singular set consists of curves in the waist of every neck. In generic and
some symmetric cases, we are able to prove that all but finitely many singularities are
cuspidal edges, and the non-cuspidal singularities are swallowtails.

1. Introduction

Maximal surfaces are zero mean curvature immersions in the Lorentz Minkowski space
E3

1. These surfaces emerge as solutions to the variational problem of locally maximizing the
area among spacelike surfaces. They share several similarities with minimal surfaces in R3.
For instance, both are critical points of the area functional and admit Weierstrass-Enneper
representations. However, while there are rich examples of complete minimal surfaces, the
only complete maximal immersion is the plane [16].

It is then natural to allow singularities. Following [4], [11], [16], etc., we adopt the term
maximal map for maximal immersions with singularities. A maximal map is called a max-
face if its singularities consist solely of points where the limiting tangent plane contains a
light-like vector [16]. Umehara and Yamada also defined completeness for maxfaces [16].
Complete non-planar maxfaces always possess a compact singularity set. At the singu-
larities, a maxface cannot be embedded, regardless of whether the rest of the surface is
embedded. Therefore, following [2], [6], [16], we adopt embeddedness in wider sense as
follows:

Definition 1.1. A complete maxface is embedded in a wider sense if it is embedded outside
of some compact subset.
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Now that singularities are allowed, there are many examples of complete maxfaces, such
as the Lorentzian Catenoid and Kim-Yang Toroidal maxface [6]. In 2006, Kim and Yang
[6] constructed complete maximal maps of genus k ≥ 1. When k = 1, it is a complete
embedded (in a wider sense) maxface known as Kim-Yang toroidal maxface. When k > 1,
they are not maxfaces. In [2], the authors constructed a family of complete maxfaces fk
for k ≥ 1 with two ends; but when k > 1, these may not be embedded (in a wider sense).
Moreover, in 2016, Fujimori, Mohamed, and Pember [1] constructed maxfaces of any odd
genus g with two complete ends (if g = 1, the ends are embedded) and maxfaces of genus
g = 1 and three complete embedded ends.
All higher-genus maxfaces in the literature, to our best knowledge, have only two or three

ends, usually of the catenoid type. Very few known higher-genus maxfaces are embedded
(in a wider sense). Therefore, it is natural to seek examples of complete maxfaces that are
embedded (in a wider sense) with higher genus and many catenoid or planar ends.

In this paper, we construct a rich family of complete maxfaces that are embedded (in
a wider sense) of arbitrary genus and arbitrary number of spacelike ends. Each of these
families depends on a sufficiently small non-zero real parameter t.
Our primary tool of construction will be the node opening technique, a Weierstrass gluing

method developed by Traizet [13]. The approach starts from Weierstrass data defined on
a Riemann surface with nodes, then obtains Riemann surfaces by opening the nodes into
necks and, at the same time, extends the Weierstrass data to Riemann surfaces using the
Implicit Function Theorem.

The node-opening technique has been very successful in constructing a rich variety of
minimal surfaces [13]. However, to the best of our knowledge, the current paper marks
the first application of the node opening technique to surfaces in the Lorentz-Minkowski
space.

The Weierstrass gluing method has several advantages over other methods. On the one
hand, in the existing literature on maxfaces, authors often need to assume symmetries to
make the construction possible, hence only produce examples restricted to symmetries. The
gluing technique has been a very powerful tool to break symmetries in minimal surfaces;
in some sense, the technique was developed for this purpose [13]. We will see later that it
is equally powerful in breaking symmetries in maximal surfaces. On the other hand, while
the PDE gluing method is also popular for constructing minimal surfaces, the existence
of singularities makes it difficult to apply on maxfaces. More specifically, one needs to
identify (glue) two curves in the process, but the analysis would be difficult if the curves
contain singularities. In the Weierstrass gluing process, we instead identify (glue) two
annuli; hence, we can bypass the singularities.

The node-opening construction for maxfaces is very similar to that for minimal surfaces;
hence will only be sketched in 4. By simply comparing notes, we obtain a rich variety
of new maxfaces with high genus and arbitrarily many space-like ends. Among them
are the Lorentzian Costa and Costa–Hofmann–Meeks (CHM) surfaces. To the best of
our knowledges, these are the first time that Lorentzian analogues of CHM surfaces were
constructed.



NODE-OPENING CONSTRUCTION OF MAXFACES 3

Remark 1.2. One could surely use the node-opening technique to construct singly and
triply periodic maxfaces just by mimicking [12, 15]. We believe that many examples in
the existing literature can be produced in this way [2], [10]. However, we do not plan to
implement such constructions.

The singularities of maxfaces are an interesting aspect that is special for maxfaces.
Complete non-planar maxfaces always appear with singularities, such as cuspidal edges,
swallowtails, cuspidal crosscaps, and cone-like singularities, to name a few. We refer the
readers to [16], [9], and [8] to explore various singularities on maxfaces. In Section 5,
we will analyse the types of singularities on the maxfaces that we construct using their
Weierstrass data.

In fact, components of the singular set are waists around the necks. We first prove in
Theorem 5.1 that, around a specific neck and for sufficiently small non-zero t, either the
singular set is mapped to a single point (cone-like singularity), or all but finitely many
singular points are cuspidal edges. Moreover, the finitely many non-cuspidal singularities
are generalized Ak singularities, their positions on the waist depend analytically on t, and
their types do not vary for sufficiently small t. Then, in Proposition 5.2, we show that,
generically, there are four swallowtail singularities around a neck. The non-generic cases
are generally hard to analyse. But in Section 5.5, we are able to analyse more in the
presence of rotational and reflectional symmetries.

We will provide examples of maxfaces in Section 3, and will analyse the singularities on
Lorentzian Costa and Lorentzian Costa–Hoffman–Meeks surfaces.

Acknowledgment: The First and Third Authors would like to extend their sincere
gratitude to Professor S. D. Yang for graciously inviting them to The 3rd Conference on
Surfaces, Analysis, and Numerics at Korea University. They are truly grateful for the
opportunity, and our current work has commenced.

2. Main results

We want to construct maxfaces that look like horizontal planes connected by small necks.
For that, we consider L horizontal planes, labeled by integers l ∈ [1, L]. We want nl > 0
necks at level l, that is, between the planes l and l + 1, 1 ≤ l < L. For convenience, we
adopt the convention that n0 = nL = 0, and write N =

∑
nl for the total number of necks.

Each neck is then labeled by a pair (l, k) with 1 ≤ l < L and 1 ≤ k ≤ nl.
To each plane is associated a real number Ql, indicating the logarithmic growth of the

catenoid (Ql ̸= 0) or planar ends (Ql = 0). To each neck is associated a complex number
pl,k ∈ C indicating its horizontal limit position at t = 0. We write p = (pl,k)1≤l<L,1≤k≤nl

and Q = (Ql)1≤l<L. The pair (p,Q) is called a configuration.
Given a configuration (p,Q), let cl be the real numbers that solve

Ql = nl−1cl−1 − nlcl, 1 ≤ l ≤ L,

under the convention that c0 = cL = 0. A summation over l yields that
∑

Ql = 0, which is
necessary for c = (cl)1≤l≤L to be uniquely determined as a linear function of Q. In fact, we
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may even replace Q by c in the definition of a configuration. Geometrically, cl corresponds
to the “size” of the necks at level l.

For the neck (l, k) in a configuration, we define the force Fl,k on the neck as

Fl,k =
∑

1≤i ̸=k≤nl

2c2l
pl,k − pl,i

−
nl+1∑
i=1

clcl+1

pl,k − pl+1,i

−
nl−1∑
i=1

clcl−1

pl,k − pl−1,i

.

Note that we have necessarily
∑

Fl,k = 0.
Alternatively, let

ωl = −
nl∑
k=1

cl dz

z − pl,k
+

nl−1∑
i=1

cl−1 dz

z − pl−1,k

be the unique meromorphic 1-form on Cl with simple poles at pl,k and pl−1,k, respectively
with residues −cl and cl−1. Then, the force is given by

Fl,k =
1

2
Respl,k

(
ω2
l

dz
+

ω2
l+1

dz

)
.

Definition 2.1. A configuration is balanced if Fl,k = 0 for all 1 ≤ l < L and 1 ≤ k ≤ nl,
and is rigid if the differential of F = (Fl,k)1≤l<L,1≤k≤nl

with respect to p has a complex
rank of n− 2.

In fact, n − 2 is the maximum possible rank. To see this, note that the forces F are
invariant under the translations and complex scalings of p.
A necessary condition for the balance is

W :=
L∑
l=1

nl∑
k=1

pl,kFl,k =
L−1∑
l=1

nl(nl − 1)c2l −
L−2∑
l=1

nlnl+1clcl+1 = 0.

We now state our main result.

Theorem 2.2. Let (p,Q) be a balanced and rigid configuration such that the differential of
Q 7→ W has rank 1. Then, for sufficiently small t, there is a smooth family Mt of complete
maxfaces with the following asymptotic behaviors as t → 0

• The maxfaces are of genus N − L + 1 with L space like ends, whose logarithmic
growths converge to Ql.

• After suitable scalings, the necks at level l converge to Lorentzian catenoids;
• Mt scaled by t converges to an L-sheeted horizontal plane with singular points at
pl,k.

Moreover, Mt is embedded in a wider sense for sufficiently small t if Q1 < Q2 < · · · < QL.
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To state our result on singularities, we need to define

(2.1) R
(r)
l,k (θ) =


Im

(
e(r+1)iθRespl,k

ωr+2
l

dz
− e−(r+1)iθ Respl,k

ωr+2
l+1

dz

)
, l odd,

Im

(
e(r+1)iθ Respl,k

ωr+2
l

dz
− e−(r+1)iθRespl,k

ωr+2
l+1

dz

)
, l even.

Our results about singularities are summarized below.

Theorem (Informal). On a maxfaces constructed above, for sufficiently small non-zero t,

• The singular set has N singular components, each being a curve around the waist
of a neck.

• If the singular curve is not mapped to a single point (cone-like singularity), then all
but finitely many singular points are cuspidal edges.

• The non-cuspidal singularities are generalized Ak singularities, their positions vary
analytically with t, and their types do not vary.

• If R
(1)
l,k ̸= 0, then there are exactly four non-cuspidal singularities around the neck

(l, k), and they are all swallowtails. Moreover, they tend to be evenly distributed on
the waist as t → 0.

The results above cover the generic situations. The non-generic cases are hard to analyze.
However, if the configuration has symmetries, we have the following results:

(1) Assume that the configuration has rotational symmetry of order r > 1s around a

neck and R
(r−1)
l,k ̸= 0, then for sufficiently small non-zero t, there are 2r swallowtail

singularities around the neck, and they tend to be evenly distributed as t → 0.
(2) Assume that the configuration has a vertical reflection plane that cuts through a

neck, then the singularity around the neck that is fixed by the reflection is non-
cuspidal

(3) Assume that the configuration of necks has a horizontal reflection plane that cuts
through a neck, then the singular curve around the neck is mapped to a conelike
singularity.

We will demonstrate these situations by examples in the next section.

3. Examples

3.1. Configurations from minimal surfaces. Note that the balance and non-degeneracy
conditions for maxfaces are exactly the same as for minimal surfaces. So all the configu-
rations found in [13] that give rise to the minimal surface also give rise to maxfaces. We
now summarize some examples (or methods to produce examples) from [13].

• The simplest maxface is the Lorentzian catenoid. It is of genus 0, has two spacelike
ends, and is given by the configuration

L = 2, n1 = 1, p1,1 = 0,

Q1 = −1, Q2 = 1, (so c1 = 1).
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• Lorentzian Costa surface (m = 2) or Lorentzian Costa–Hoffman–Meeks (CHM)
surfaces (m > 2) are highly symmetric maxfaces. They are of genus m − 1, have
three spacelike ends and are given by configurations

L = 3, n1 = 1, n2 = m,

p1,1 = 0, p2,m = e2kπi/m, 1 ≤ k ≤ m,

Q1 = 1−m, Q2 = −1, Q3 = m (so c1 = m− 1, c2 = 1).

They might be the only maxfaces with three space-like ends.
• Numerical examples can be obtained by the polynomial method. More specifically,
let

Pl =

nl∏
k=1

(z − pl,k), P =
L−1∏
l=1

Pl,

then the configuration is balanced if

L−1∑
l=1

c2lP
P ′′
l

Pl

−
L−2∑
l=1

clcl+1P
P ′
lP

′
l+1

PlPl+1

≡ 0.

If a polynomial solution to this differential equation has only simple roots, then the
roots correspond to the positions of nodes (up to permutations).

• Implicit examples can be obtained by perturbing “singular” configurations.
More specifically, consider a partition I1, ..., Im of the nodes and a family of

configurations given by pλl,k = p̂µ + λµp̃l,k,µ when (l, k) ∈ Iµ. Then, the limit

configuration p0 is singular. A force can be defined for the limit configuration in
terms of p̂ and the partition. For each µ, p̃l,k,µ form a subconfiguration p̃µ.
In the backward direction, Traizet [13] found sufficient conditions to recover

configuration pλ from the limit configuration p̂ and the sub-configurations p̃µ. In
particular, the limit configuration and all sub-configurations should be balanced.
This result was used to construct examples with no symmetry.

Remark 3.1. As we have noticed in Remark 1.2, a similar technique can produce singly
and triply periodic maxfaces. Although we do not plan to implement such constructions,
it is predictable that the balance and non-degeneracy conditions are again the same for
maxfaces and for minimal surfaces. Hence, the periodic configurations in [12, 15] should
also give rise to maxfaces.

3.2. Singularities on Lorentzian Costa and CHM surfaces. The Lorentzian Costa
and CHM surfaces are particularly interesting in regard to singularities.

The Lorentzian Costa surface has three disjoint singular curves in the waist of each neck.

To analyse its singularities, we need to compute R
(r)
l,k (θ) as in Equation 2.1. We have
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R
(1)
1,1(θ) = 6 sin θ,

R
(1)
2,1(θ) = −3 sin θ,

R
(1)
2,2(θ) = −3 sin θ.

Therefore, by Theorem 5.1 and Proposition 5.2, we can conclude that all non-cuspidal
singularities are swallowtails for sufficiently small t.
The computation above did not rely on symmetries. For a Lorentzian CHM surface, by

Propositions 5.3 and 5.4, we can already conclude from its dihedral symmetry that, for
sufficiently small non-zero t, there are 2m non-zero in the waist of the neck (1, 1), all are
swallowtails and are fixed by the vertical reflections. See Figure 1.

Figure 1. Sketch of singularity structure of a CHM surface with m = 4.
The dashed lines indicate the reflection symmetries. The solid curves are
singular curves in the waist of the necks. The singularities are cuspidal
edges except at the dots, where the singularities are swallowtails.

Alternatively, we could also perform an explicit computation that R
(r)
1,1 = 0 for all 1 ≤

r ≤ m− 2 while
R

(m−1)
1,1 = (m+ 1)m(m− 1)m sin(mθ) ̸≡ 0.

Moreover, for 1 ≤ k ≤ m, we have

R
(1)
2,k = (1−m2) sin(2θ − 4kπ/m) ̸≡ 0.
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Then, by Theorem 5.1 and Proposition 5.2, we can conclude that for sufficiently small
non-zero t, there are 2m non-cuspidal singularities in the waist of the center neck, and four
non-cuspidal singularities in the waist of the other necks, and they are all swallowtails.

In Figure 2, we show the numerical pictures of Lorentzian CHM surfaces with m = 4
and m = 5, and zoom in to show the details of singularities around the center neck.

Figure 2. CHM sufaces with m = 4 (top) and m = 5 (bottom). On
the right-hand side are the zoom-ins of the center neck, showing details
of the cuspidal edges and swallowtails. To make this picture, we use the
node-opening construction as in [15], which is different but equivalent to the
construction in the current paper, and better suited for numerical computa-
tions [14].
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4. Sketched construction

4.1. The Weierstrass data. We construct maxfaces using a Weierstrass–Enneper-like
parameterization, namely

(4.1) M ∋ z 7→ Re

∫ z (1
2
(g−1 + g),

i

2
(g−1 − g), 1

)
dh ∈ E3

1,

where M is a Riemann surface, possibly with punctures corresponding to the ends, g is
a meromorphic function, and dh a holomorphic 1-form on M , subject to the following
conditions:

Divisor condition: Away from the punctures, we must have

(g)0 − (g)∞ = (dh)0

for the Weierstrass integrands to be holomorphic. The behavior at the punctures
depend on the type of the ends.

Period condition: For all closed curves γ on M , we have∫
γ

g−1dh+

∫
γ

gdh = 0,(4.2)

Re

∫
γ

dh = 0.(4.3)

So, closed curves in M are mapped to closed curves on the surface. This guarantees
that the immersion is well-defined.

Regularity condition: |g| is not identically 1. In fact, the pullback metric on the

Riemann surface M is given by ds2 = 1
4
(|g|−1 − |g|)2 |dh|2. In view of the divisor

condition, the singularity set for maxfaces is then given by {p ∈ M : |g(p)| = 1}.
The regularity condition guarantees that the immersion is regular.

Remark 4.1. For minimal surface, the horizontal period condition (4.2) would have a minus
sign in the middle, and the pull-back metric would have a plus sign.

4.1.1. The Riemann Surface. We construct the Riemann surface by node-opening as fol-
lows:

To each of the L horizontal planes is associated a copy of the complex plane C, which
can be seen as the Riemann sphere with punctures at ∞. The L copies of C, as well as
their punctures, are then indexed by l, 1 ≤ l ≤ L. To each neck at level l, 1 ≤ l < L is
associated a puncture al,k ∈ Cl and a puncture bl,k ∈ Cl+1, 1 ≤ k ≤ nl.
Initially at t = 0, we simply identify al,k with bl,k for all 1 ≤ l < L and 1 ≤ k ≤ nl

to obtain a noded Riemann surface Σ0. As t increases, fix local coordinates vl,k in the
neighborhood of al,k, and local coordinates wl,k in the neighborhood of bl,k; a concrete
choice will be made soon later. We may fix an ε sufficiently small and independent of l and
k so that the disks |vl,k| < 2ε and |wl,k| < 2ε are all disjoint. For t < ε, we may remove
the disks |vl,k| < t2/ε and |wl,k| < t2/ε, and identify the annuli

t2/ε < |vl,k| < ε t2/ε < |wl,k| < ε
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by
vl,kwl,k = t2.

The resulting Riemann surface is denoted by Σt.

4.1.2. Gauss map and local coordinates. We define on Cl the meromorphic function

gl :=

nl∑
k=1

αl,k

z − al,k
+

nl−1∑
k=1

βl−1,k

z − bl−1,k

.

Then the Gauss map g is defined on Σt as

g(z) =

{
tgl(z) if z ∈ Cl and l is odd,

1/(tgl(z)) if z ∈ Cl and l is even.

As t → 0, the Gauss map converges to that of catenoids around the necks. Note that 1/gl
provides local coordinates vl,k around al,k and wl−1,k around bl−1,k. From now on, we adopt
these local coordinates for the construction of Σt.

4.1.3. The height differential. Recall the period conditions Re
∫
γ
dh = 0 for every closed

cycles γ of Σt. Define

Ωl := {z ∈ Cl : |vl,i| < ε ∀1 ≤ i ≤ nl and |wl−1,j| < ε ∀1 ≤ j ≤ nl−1},
where ε was previously fixed for the construction of Σt. Let γl,k be small clockwise circles in
Ωl around al,k; they are homologous to counterclockwise circles in Ωl+1 around bl. We close
the vertical periods by requiring that

∫
γl,k

dh = 2πirl,k for real numbers rl,k. Moreover, as

we expect catenoid ends at ∞l, we require that the height differential dh has simple poles
of residues −Rl ∈ R at ∞l, 1 ≤ l ≤ L. By the Residue Theorem, it is necessary that∑

Rl = 0 and
nl∑
k=1

rl,k −
nl−1∑
k=1

rl−1,k = −Rl.

So, it suffices to prescribe the residue −Rk and the periods around γl,k for 1 < k ≤ nl.
By [13], these requirements uniquely determine the height differential dh. Moreover, as

t → 0, dh converges uniformly on a compact set of Ωl to the form

(4.4)

nl∑
k=1

−rl,kdz

z − al,k
+

nl−1∑
i=1

rl−1,kdz

z − bl−1,k

We want catenoid or planar ends at the punctures ∞l. This translates to the following
divisor condition at ∞l: Whenever g has a simple zero or pole there, dh must have a
simple zero; this corresponds to the catenoid ends. On the other hand, whenever g has a
zero or pole of multiplicity m > 1 at ∞l, dh must have a zero or multiplicity m − 2; this
corresponds to the planar ends. Because dz has a pole of order 2 at the punctures ∞, our
divisor condition can be formulated as

(4.5) (g)0 − (g)∞ = (dh/dz)0.
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4.2. Using the Implicit Function Theorem. We want to find parametersX = (t, a, b, α, β, r, R)
that solve the divisor conditions, period conditions, and regularity conditions. All param-
eters vary in a neighborhood of their initial values at t = 0, denoted by X◦. Given a
balanced configuration (l, p, c), we will see that

t◦ = 0, R◦
l = Ql,

∀1 ≤ k ≤ nl, r
◦
l,k = −α◦

l,k = β◦
l,k = cl

∀1 ≤ k ≤ nl, a
◦
l,k = b◦l,k =

{
pl,k, l odd

pl,k, l even.

The argument in [13] applies, word by word, to prove the following

Proposition 4.2 (Divisor condition). For (t, a, b, r, R) in a neighborhood of their initial
values, there exist unique values for α and β, depending analytically on (t, a, b, r, R), such
that the divisor conditions are satisfied. Moreover, at t = 0, we have −αl,k = βl,k = rl,k.

For 1 ≤ l < L, 1 < k ≤ nl, let Γl,k be a closed curve that starts in Ωl, travels first
through the neck (l, 1) to Ωl+1, then through the neck (l, k) back to Ωl, and finally close
itself. See [13] for formal definitions of these curves. For 1 ≤ l < L and 1 < k ≤ nl, the
curves Γl,k and the previously defined γl,k form a homology basis. So, we only need to close
periods on these curves to solve the period conditions.

Recall that the vertical periods are already closed when defining the height differential dh.
In the following proposition, we need to switch to the parameter τ given by t = exp(−1/τ 2).
Again, The argument in [13] applies word by word. The key point is that −τ−2

∫
Γl,k

dh

extends to a smooth function at τ = 0 with the value 2(rl,k − rl,1).

Proposition 4.3 (Vertical periods). Assume that (α, β) are given by the previous propo-
sition. For (τ, a, b, R) in a neighborhood of their initial values, there exists unique values
for r, depending smoothly on (τ, a, b, R), such that the vertical period condition (4.3) are
satisfied over the curves Γl,k, 1 ≤ l < L and 1 < k ≤ nl. Moreover, at τ = 0, we have
rl,k = cl for all 1 ≤ k ≤ nl and 1 ≤ l < L, where cl are defined from Rl by c0 = cL = 0 and
cl−1nl−1 − clnl = Rl.

The proof for the following step differs from minimal surfaces [13] only by a few signs.
This slight difference comes from the sign change in the horizontal period condition (4.2).
We will give a sketch to point out the difference.

Proposition 4.4 (Horizontal periods). Given a balanced and rigid configuration (p,Q)
such that the map Q → W has rank 1. Assume that (α, β, r) are given by previous propo-
sitions. For τ in a neighborhood of 0, there exists unique values for a, b, and R, depending
smoothly on τ , such that

∑
Rl = 0 and the horizontal period condition (4.2) are satisfied

over the curves Γl,k and γl,k, 1 ≤ l < L and 1 < k ≤ nl. Moreover, at τ = 0, up to a

translation in Cl, we have al,k = bl,k = pl,k if l is odd, = pl,k if l is even, and Rl = Ql.
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Sketched proof. Define the horizontal period along a curve c as

P (c) =

∫
c

g−1dh+

∫
c

gdh.

Then tP (Γl,k) is extends to a smooth function at τ = 0 with the values{
bl,k − bl,1 + al,1 − al,k, l odd;

bl,k − bl,1 + al,1 − al,k, l even.

If we normalize b by fixing bl,1 = al,1, then tP (Γl,k) vanish at τ = 0 if bl,k = al,k. As the
partial differential of tP (Γl,k) with respect to b is a linear isomorphism, the parameters b
are found by the Implicit Function Theorem.

Using these values of b, t−1P (γl,k) extends to a smooth function at τ = 0 with the values
−4πi

( ∑
1≤j ̸=k≤nl

2c2l
al,k − al,j

−
nl+1∑
j=1

clcl+1

al,k − al+1,j

−
nl−1∑
j=1

clcl−1

al,k − al−1,j

)
, l odd,

4πi

( ∑
1≤j ̸=k≤nl

2c2l
al,k − al,j

−
nl+1∑
j=1

clcl+1

al,k − al+1,j

−
nl−1∑
j=1

clcl−1

al,k − al−1,j

)
, l even.

They vanish at t = 0 if al,k = pl,k where p is from a balanced configuration. Since the
configuration is rigid, we may re-normalize a by fixing two of the a parameters, then use the
Implicit Function Theorem to find the remaining N −2 a parameters, depending smoothly
on t that solves t−1P (γl,k) = 0 for all but two necks.
It remains to solve P (γl,k) = 0 for the remaining two necks. It is necessary that nl0 > 1

for some l0; otherwise, the configuration would not be balanced unless N = 1. So we may
assume that the remaining necks are labeled by (l0, 1) and (l0, k0), 1 < k0 ≤ nl0 . The
relation that P (γl0,1) + P (γl0,k0) = 0 follows from the Residue Theorem. The Riemann
Bilinear Relation shows that

Re
(
P (γl0,k0)

∫
Γl0,k0

g−1dh
)
= 0.

And finally, we study the function

G = Im
( L∑

l=1

nk∑
k=1

(−1)kpl,kt
−1P (γl,k)

)
.

It extends to a smooth function at τ = 0 with the values of 4πW , which vanishes because
the configuration is balanced. Since the partial differential of W with respect to R is
surjective at t = 0, we may use the Implicit Function Theorem to find R, depending
smoothly on τ in a neighborhood of 0, such that

∑
Rl = 0 and G(τ, R) = 0. These

conclude the proof that P (γl0,1) = P (γl0,k0) = 0. □

We have constructed a family of maximal maps.

(X1, X2, X3) : Σt → E3
1.
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Let 0k be the origin point of Ck. With a translation if necessary, we may assume that
0k ∈ Ωk. With similar computations as in [13], one verifies that

• The necks converge to Lorentzian catenoids and, after a scaling by t, the limit
positions of the necks are pl,k.

• The image of Ωk is a space-like graph over the horizontal plane and this image stays
within a bounded distance from X3(0k) +Rk log(1 + t|x1 + ix2|).

• X3(0k)−X3(0k+1) = O(− log t). So, if Qk < Qk+1, then for sufficiently small t, we
have Rk ≤ Rk+1 and the image of Ωk is above the image of Ωk+1.

The singular set, given by |vl,k| = t and |wl,k| = t, is compact in Σt, and is not included in
Ωk. We then have proved that the constructed maximal maps are in fact maxface. Moreover
these are embedded in a wider sense for sufficiently small t if Q1 < Q2 < · · · < QL.

5. Singularities

Recall that the singular set is given by |g| = 1. From our definition of the Gauss map,
the singularity set of the maxface Xt is given by the union of

Sl,k = {z ∈ Cl : |vl,k| = t} = {z ∈ Cl+1 : |wl,k| = t}
with 1 ≤ l ≤ N − 1, 1 ≤ k ≤ nl. In this section, we aim to analyze the nature of these
singularities.

For this purpose, we will focus on singularities around a specific neck of interest, labeled
by (l, k). Without loss of generality, we may assume that l is odd. So the Gauss map
gt = t/vl,k = wl,k/t in the local coordinates. To ease the text, we will omit the subscript
(l, k) unless necessary. So we study the connected component S of the singular set given
by |v| = |w| = t.

5.1. The governing function. We need to study the function

(5.1) A(t, θ) = −gt(dht/dv)

dgt/dv

∣∣∣
v=eiθ

= teiθft(te
iθ),

where ft := dht/dv.
Let p be a singular point with v(p) = teiθ. On the one hand, it was proved in [16] that

the parameterization (4.1) is a front (that is, the projection of a Legendrian immersion
into the unit cotangent bundle of R3) on a neighborhood U of a singular point p and p is
a non-degenerate singular point if and only if Re(1/A(t, θ)) ̸= 0. If this is the case, the
singular set S is a smooth singular curve in U that passes through p. In our case, the
singular curve γt(θ) is actually given by v(γt(θ)) = teiθ, 0 ≤ θ < 2π.
On the other hand, it was shown in [16] that

det(γ̇t(θ), ηt(θ)) = Im(1/A(t, θ)),

where γ̇t is the singular direction and ηt ∈ Ker(dXt) is the null direction. So Im(1/A)
measures the collinearity between the γ̇ and η.
In particular, p = teiθ is a cuspidal singularity whenever

(5.2) ReA(t, θ) ̸= 0 and ImA(t, θ) ̸= 0,
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and p is a swallowtail singularity whenever

(5.3) ReA ≠ 0, ImA = 0, and
∂

∂θ
ImA ≠ 0.

In fact, the cuspidals are A2 singularities, the swallowtails are A3 singularities and the
butterflies are A4 singularities. More generally, one may define [3] that p is a generalized
Ak+2 singularity if

(5.4) ReA ≠ 0, ImA =
∂

∂θ
ImA = · · · ∂k−1

∂θk−1
ImA = 0,

∂k

∂θk
ImA ≠ 0.

It was proved [5], [7] that generalized Ak singularities with k = 2, 3, 4 are indeed Ak

singularities, but this is not known for k ≥ 5.

5.2. Nondegeneracy. Recall that dht extend real analytically to t = 0 with the form
given by (4.4), with simple poles of residue −rl,k at the nodes at al,k. Because −rl,k → −cl
as t → 0, we have A(t, θ) → −cl ̸= 0 no matter the value of θ. This implies that
A(t, θ) extends real analytically to t = 0 with a non-zero finite value independent of θ. So
Re(1/A(t, θ)) extends real analytically to t = 0 with a non-zero value independent of θ.
By continuity, we have Re(1/A) ̸= 0 for sufficiently small t.
This proves that, for sufficiently small non-zero t, the Weierstrass parameterization de-

fines a front in a neighborhood of the singular points, and the singular points are all
nondegenerate. Note that, for sufficiently small t, the singular set is a circle of radius t in
the local coordinate v, which obviously defines a smooth curve. So, the nondegeneracy of
the singular points is expected.

5.3. Non-cuspidal singularities. The node opening could also be implemented by an
identification vw = s where s is a complex parameter. It was proved in [13] that the height
differential dh depends holomorphically on s and v, and extends holomorphically to s = 0.
In our case, we have vft extends holomorphically to (s, v) = (0, 0) with the value −cl. So
A(t, θ) depends real analytically on t and θ, and extends real analytically to t = 0 with
the value −cl independent of the value of θ.
The singularity is cuspidal when ImA ̸= 0. So, the set of non-cuspidal singularities

around a neck, given as the zero locus ImA = 0, is a real analytic variety.
If the zero locus has a non-zero measure, then ImA ≡ 0, and the singular curve is

mapped to a single point, so we have a cone singularity no matter t and θ [2].
Otherwise, by Lojasiewicz’s theorem, the non-cuspidal singular set can be stratified into a

disjoint union of real analytic curves (1-strata) and discrete points (0-strata). In particular,
t = 0 is a trivial solution of ImA = 0, and there is no 0-strata for t ̸= 0 sufficiently small.
In other words, in a neighborhood of t = 0, the set of non-cuspidal singularities is given
by disjoint curves. See Figure 3.

More generally, the set of generalized Ak-singularities, k > 0, is a real-analytic variety
given by the zero locus

Zk = {(t, θ) : ImA =
∂

∂θ
ImA = · · · ∂k−1

∂θk−1
ImA = 0}.
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Figure 3. Sketch of a typical structure of non-cuspidal singularities. The
circle in the middle is the trivial locus with t = 0. Solid curves are solutions
to ImA = 0. Dashed curves are solutions to ∂ ImA/∂θ = 0. Dots indicate
the 0-strata. The grey dots at the intersection of solid and dashed curves are
then at least butterfly singularities. The dot-dashed curve indicates a pos-
sible curve that solves ImA = ∂ ImA/∂θ = ∂2 ImA/∂θ2 = 0. Singularities
on this curve are then at least generalized A5 singularities. The grey area
indicates a neighborhood of the trivial locus that includes no 0-strata of the
variety. The variety appears as disjoint curves within this neighborhood.

Again, by Lojasiewicz’s theorem, the locus can be stratified into curves and discrete points
and contains the trivial solution t = 0. In particular, if the singularities are of type Ak

along a segment of a curve in Zk, then the type will remain along this curve until hitting
a 0-stratum of Zk+1. See Figure 3.
We have proved the following

Theorem 5.1. For t ̸= 0 sufficiently small, if the height differential dht is not identically 0
(as a function of t and θ), then the non-cuspidal singularities around a neck are described
by a disjoint union of finitely many curves in the (t, θ)-plane, each given by a real-analytic
function θ = θ(t). Moreover, along each of these curves, the type of singularities is invari-
ant for t ̸= 0 sufficiently small.
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5.4. Swallowtails. We have seen that, generically, a non-cuspidal singularity is a swal-
lowtail. In this part, for sufficiently small non-zero t, we want to identify swallowtails using
the Implicit Function Theorem. The strategy is the following:

We first remove the trivial solutions t = 0 by considering the function

(5.5) Ã(t, θ) := ImA(t, θ)/tm,

which should extend to t = 0 with the values Ã(0, θ) that is not identically 0. Of course,
this is only possible if ImA(t, θ) itself is not identically 0. That is if the singularity is not

cone-like. Then Ã(0, θ) could only have finitely many zeros. At a simple zero θ0, we may

apply the Implicit Function Theorem on Ã. More specifically, if

Ã(0, θ0) = 0,
∂

∂θ
Ã(0, θ0) ̸= 0

for some θ0, then for sufficiently small t, there exists a unique value for θ as a function of

t, such that Ã(t, θ(t)) = 0 and θ(t) extends to t = 0 with the value θ(0) = θ0. Moreover,
∂
∂θ
Ã(t, θ(t)) ̸= 0 for sufficiently small non-zero t. In other words, the singularities are

swallowtails along the curve θ = θ(t). Unfortunately, if θ0 is a multiple zero of Ã, we are
not able to draw concrete conclusions on the numbers and types of the singularities in the
neighborhood (0, θ0).

Now, the problem reduces to finding Ã. If ∂k

∂tk
ImA(0, θ) ≡ 0 for all 0 ≤ k < m, then

∂m

∂tm
ImA(t, θ) extends to t = 0 with the value

∂m

∂tm
ImA(0, θ) = m! lim

t→0

ImA(t, θ)

tm
.

Therefore, let m be the smallest integer k such that ∂k

∂tk
A(0, θ) ̸≡ 0, then

Ã(t, θ) =
ImA(t, θ)

tm
=

1

m!

∂m

∂tm
ImA(t, θ) + o(1)

for t in a neighborhood of 0, and extends to t = 0 with the value 1
m!

∂m

∂tm
ImA(0, θ).

In the Appendix, we compute that the partial derivatives

(5.6)
1

m!

∂mA
∂tm

(0, θ) = lim
t→0

∑
0≤n≤m−1

1

(m− n− 1)!

∂m−n−1

∂tm−n−1
(ane

i(n+1)θ − bne
−i(n+1)θ).

where

an =
1

2πi

∫
|v|=ε

dht

vn+1
, bn =

1

2πi

∫
|w|=ε

dht

wn+1

are coefficients in the Laurent expansions of dht in the Cl and Cl+1, respectively. Recall
that, at t = 0, dht/dv = gl = 1/v on Cl, so

an = Res0 g
n+2
l , bn = Res0 g

n+2
l+1 .

In particular,
∂A
∂t

(0, θ) = lim
t→0

(a0e
iθ − b0e

−iθ).
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Note that, at t = 0, we have

a0 =
∑

1≤j ̸=k≤nl

cl
pl,k − pl,j

−
∑

1≤j≤nl−1

cl−1

pl,k − pl−1,j

,

b0 =
∑

1≤j ̸=k≤nl

cl
pl,k − pl,j

−
∑

1≤j≤nl+1

cl+1

pl,k − pl+1,j

,

so a0 + b0 = Fl,k/cl, which vanishes by the balance condition. Therefore, ∂
∂t
A(0, θ) =

2Re(a0e
iθ) is real, hence ∂

∂t
ImA(0, θ) = 0. This implies that m > 1 in (5.5).

Then, we must look at the next derivative, namely

1

2

∂2A
∂t2

(0, θ) = lim
t→0

(a1e
2iθ − b1e

−2iθ) + lim
t→0

∂

∂t
(a0e

iθ − b0e
−iθ).

Note that the node opening process remains the same if we replace t by −t, so dht, as
well as its Laurent coefficients, are even in t. So, the second limit vanishes in the formula
above. The imaginary part of the first limit equals R(1)(θ) as defined in Section 2. If it

does not vanish, then m = 2 in (5.5), and Ã(0, θ) is given by a shifted sine function of
period π. We then conclude that

Proposition 5.2. If R(1)(θ) ̸≡ 0 at t = 0, there are four non-cuspidal singularities around
the neck for sufficiently small non-zero t, they are all swallowtails and, as t → 0, the
differences between the angles θ of neighboring swallowtails tend to π/2. In other words,
these swallowtails tend to be evenly distributed as t → 0.

Otherwise, if R(1)(θ) ≡ 0 at t = 0, we must look at higher order derivatives of A and
continue the analysis. But things become significantly more complicated, mainly because
we don’t have control over even-order derivatives of the an and bn.

5.5. Symmetries. We can say more about the singularities if symmetries are imposed to
the maxfaces.

Proposition 5.3. Assume that the configuration has a rotational symmetry of order r >
1 and the neck of interest is at the rotation center. If R(r−1)(θ) ̸≡ 0, then there are
2r non-cuspidal singularities around the neck for sufficiently small non-zero t, they are
all swallowtails and, as t → 0, the differences between the angles θ between neighboring
swallowtails tend to π/r. In other words, these swallowtails tend to be evenly distributed
as t → 0.

Proof. Under the assumed symmetry, vf = vdht/dv is a function of vr, hence a0 = b1 =
· · · = ar−2 = br−2 = 0 for all t. then m ≥ r − 1 in (5.5) and the equality holds if

R(r−1)(θ) ̸≡ 0 at t = 0. In the case of equality, Ã(0, θ) is given by a shifted sine function
of period 2π/r. □

Proposition 5.4. Assume that the configuration has a vertical reflection plane that cuts
through the neck of interest. Then, the singularity around the neck that is fixed by the
reflection is non-cuspidal.
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Proof. We may further assume that the singular point p fixed by the reflection is given by
v(p) = t. Then, the height differential is real on the real line under the local coordinate v.
So, all the Laurent coefficients are real no matter the value of t. In particular, ImA(t, 0) =
0, so p is a non-cuspidal singularity. □

Remark 5.5. For sufficiently small non-zero t, a singularity around the neck that is fixed
by a vertical reflection could be a generalized Ak singularity only for odd k.

Remark 5.6. By the two propositions above, if a configuration has a dihedral symmetry of
order 2r and the neck of interest is at the symmetry center, then there are 2r swallowtails
around the neck with the same dihedral symmetry.

Proposition 5.7. Assume that the configuration of necks has a horizontal reflection plane
that cuts through the neck of interest. Then, the singular curve around the neck is mapped
to a conelike singularity.

Proof. Under the assumed symmetry, the singular curve is pointwise fixed by an antiholo-
morphic involution ι : v 7→ w = t2/v of the Riemann surface Σt, and ι∗(dh) = −dh. In
other words, we have an + bn = 0 for all n ∈ Z no matter the value of t. As a consequence,
the partial derivatives of A over t are all real, so ImA ≡ 0. □

Appendix A. Derivatives of A

The height differential dht for the maxface, as defined in Section 4.1.3, has the following
Laurent expansion in the annulus t2/ε < v < ε:

dht(v) =
∑
n∈Z

an(t)v
ndv, dht(w) =

∑
n∈Z

bn(t)w
ndw,

where

an =
1

2πi

∫
|v|=ε

dht

vn+1
, bn =

1

2πi

∫
|w|=ε

dht

wn+1
.

Moreover, for each n ∈ Z,

an =
1

2πi

∫
|v|=ε

dht

vn+1
=

−1

2πi

∫
|w|=ε

dhtw
n+1

t2n+2
.

Therefore, we have

(A.1)
∂man
∂tm

=
−1

2πi

m∑
j=0

∫
|w|=ε

wn+1

(
m

j

)
∂m−jdht

∂tm−j
(−2n− 2)j

1

t2n+2+j
.

Here, (a)j = a(a− 1) · · · (a− j + 1) (in particular (a)0 = 1) is the descending factorial. In
particular, (−2n − 2)j = 0 whenever 0 ≤ −2n − 2 < j. Note that dht and its derivatives
are bounded on the circle |w| = ε.

We now prove Equation (5.6) for the partial derivatives of A over t. We repeat the
formula below

1

m!

∂mA
∂tm

(0, θ) = lim
t→0

∑
0≤n≤m−1

1

(m− n− 1)!

∂m−n−1

∂tm−n−1
(ane

i(n+1)θ − bne
−i(n+1)θ).
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Proof. Recall the expression (5.1) of A

(A.2) A(t, θ) = teiθ
dht

dv
(teiθ) =

∑
n∈Z

an(t)t
n+1ei(n+1)θ =

∑
n∈Z

bn(t)t
n+1e−i(n+1)θ,

which can be expanded in terms of t as follows

(A.3) A(t, θ) =
∑
m≥0

1

m!

∂mA
∂tm

(0, θ)tm.

From (A.2), we have

1

m!

∂mA
∂tm

(t, θ) =
∑
n∈Z

m∑
j=0

(
m

j

)
(n+ 1)j

m!

∂m−jan
∂tm−j

tn+1−jei(n+1)θ.

In the following, we will calculate the limits of the terms on the right-hand side as t → 0.
The computation is done case by case.

n > m− 1: Since derivative of an is bounded, ∂m−jan
∂tm−j tn+1−j → 0 as t → 0 when

n > j − 1. In particular, this also holds when n > m− 1. We conclude that, when
n > m− 1 and as t → 0,

m∑
j=0

(
m

j

)
(n+ 1)j

m!

∂m−jan
∂tm−j

tn+1−jei(n+1)θ → 0.

n = m− 1: In this case, as t → 0, we have
m∑
j=0

(
m

j

)
(m)j
m!

∂m−jam−1

∂tm−j
tm−jeimθ → am−1e

imθ,

since derivatives of an are bounded and, for j < m, tm−j → 0.
0 ≤ n < m− 1: In this case, as t → 0, we have

m∑
j=0

(
m

j

)
(n+ 1)j

m!

∂m−jan
∂tm−j

tn+1−jei(n+1)θ → 1

(m− n− 1)!

∂m−n−1an
∂tm−n−1

ei(n+1)θ,

since j = n+ 1 is the only non-zero term in the summation.
n = −1: In this case, we have

m∑
j=0

(
m

j

)
(n+ 1)j

m!

∂m−jan
∂tm−j

tn+1−jei(n+1)θ = 0.

−m ≤ n ≤ −2: In this case, we have

∂m−jan
∂tm−j

tn+1−j =
−1

2πi

m−j∑
k=0

∫
w=|ε|

wn+1

(
m− j

k

)
∂m−j−kdht

∂tm−j−k
(−2n− 2)kt

−n−1−k−j

→ −1

2πi

m−j∑
k=−n−1−j

∫
w=|ε|

wn+1

(
m− j

k

)
∂m−j−kdht

∂tm−j−k
(−2n− 2)kt

−n−1−k−j.



20 HAO CHEN, ANU DHOCHAK, PRADIP KUMAR, AND SAI RASMI RANJAN MOHANTY

By the identity

(A.4)
l∑

j=0

(
m

j

)
(n+ 1)j

m!

(
m− j

k

)
(−2n− 2)k

=


1

(m− n− 1)!
, when l = −n− 1

0, when l < −n− 1
,

where l = j + k and −m ≤ n ≤ −2, we conclude that

m∑
j=0

(
m

j

)
(n+ 1)j

m!

∂m−jan
∂tm−j

tn+1−j → −1

(m+ n+ 1)!

∂m+n+1

∂tm+n+1
b−n−2.

n = −(m+ 1): In this case,

∂m−ja−(m+1)

∂tm−j
t−m−j =

−1

2πi

m−j∑
k=0

∫
|w|=ε

w−m

(
m− j

k

)
∂m−j−kdht

∂tm−j−k
(2m)k

1

t−m+j+k

→ −1

2πi

∫
|w|=ϵ

w−mdht(2m)m−j.

As t → 0, we have

m∑
j=0

(
m

j

)
(−m)j
m!

∂m−ja−(m+1)

∂tm−j
t−m−je−imθ

→−1

2πi

m∑
j=0

(
m

j

)
(−m)j
m!

∫
|w|=ϵ

w−mdht(2m)m−je
−imθ

=
m∑
j=0

(
m

j

)
(−m)j
m!

(2m)!

(m+ j)!
a−(m+1)t

−2me−imθ

=
m∑
j=0

(
m

j

)
(−m)j
m!

(2m)!

(m+ j)!
(−1)bm−1e

−imθ.

By the identity

(A.5)
m∑
j=0

(
m

j

)
(−m)j(2m)m−j

m!
= 1, m > 0,

we conclude that, as t → 0,

m∑
j=0

(
m

j

)
(−m)j
m!

∂m−ja−m−1

∂tm−j
t−m−j → −bm−1.
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n < −(m+ 1): In this case, by (A.1)

∂m−jan
∂tm−j

tn+1−j =
−1

2πi

m−j∑
k=0

∫
|w|=ε

wn+1

(
m− j

k

)
∂m−j−kdht

∂tm−j−k
(−2n− 2)k

1

tn+1+j+k
.

Since partial derivatives of dh are bounded on |w| = ϵ, ∂m−jan
∂tm−j tn+1−j → 0 as t → 0

when n + 1 + j + k < 0. In particular, this also holds when n < −(m + 1). We
conclude that, when n < −(m+ 1) and as t → 0,

m∑
j=0

(
m

j

)
(n+ 1)j

m!

∂m−jan
∂tm−j

tn+1−jei(n+1)θ → 0.

Gathering all these computations, we obtain

1

m!

∂mA

∂tm
(0, θ) = lim

t→0

(
−

∑
−m−1≤n≤−2

1

(m+ n+ 1)!

∂m+n+1

∂tm+n+1
b−n−2e

i(n+1)θ

+
∑

0≤n≤m−1

1

(m− n− 1)!

∂m−n−1an
∂tm−n−1

ei(n+1)θ

)

= lim
t→0

∑
0≤n≤m−1

1

(m− n− 1)!

∂m−n−1

∂tm−n−1
(ane

i(n+1)θ − bne
−i(n+1)θ).

□

Finally, we prove the two combinatorial identities (A.4) and (A.5) used in the proof
above.

Proof of (A.5).

m∑
j=0

(
m

j

)
(−m)j(2m)m−j

m!
=

m∑
j=0

(−1)j
m!(m+ j − 1)!(2m)!

m!(m− j)!j!(m− 1)!(m+ j)!

=
m∑
j=0

(−1)j
m

m+ j

(
m+ j

j

)(
2m

m+ j

)

=
m∑
j=0

(−1)j
m

m+ j

(
m

j

)(
2m

m

)

= m

(
2m

m

) m∑
j=0

(−1)j

m+ j

(
m

j

)
= 1,
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where the last line follows from
m∑
j=0

(−1)j

m+ j

(
m

j

)
=

m∑
j=0

(−1)j
(
m

j

)∫ 1

0

xm+j−1dx

=

∫ 1

0

xm−1

m∑
j=0

(
m

j

)
(−x)jdx =

∫ 1

0

xm−1(1− x)mdx

=
Γ(m)Γ(1 +m)

Γ(1 + 2m)
=

(m− 1)!m!

(2m)!
=

1

m
(
2m
m

) .
□

Proof of (A.4). For each −n− 1 ≤ l = j + k ≤ m,

l∑
j=0

(
m

j

)
(n+ 1)j

m!

(
m− j

k

)
(−2n− 2)k =

l∑
j=0

(
m

l

)(
l

j

)
(n+ 1)j

m!
(−2n− 2)l−j

=

(
m

l

)
l!

m!

l∑
j=0

(
l

j

)
(n+ 1)j(−2n− 2)l−j

l!

which, by similar argument as before, equals 1
(m+n+1)!

when l = −n − 1. Otherwise, if

l > −n− 1, it

=

(
m

l

)
l!

m!

l∑
j=0

(−1)j
l!(−n+ j − 2)!(−2n− 2)!

l!(l − j)!j!(−n− 2)!(−2n− 2− l + j)!

=

(
m

l

)
l!

m!

l∑
j=0

(−1)j
(
−n+ j − 2

j

)(
−2n− 2

−2n− 2− l + j

)

=

(
m

l

)
l!

m!

l∑
j=0

(−1)j
(−n− 2 + j)l+n

(−n− 2)l+n

(
−2n− 2− l + j

j

)(
−2n− 2

−2n− 2− l + j

)

=

(
m

l

)
l!

m!

l∑
j=0

(−1)j
(−n− 2 + j)l+n

(−n− 2)l+n

(
l

j

)(
−2n− 2

−2n− 2− l

)
= 0

because (−n− 2 + j)l+n is a polynomial of j of degree 0 ≤ l + n < l. □
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