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Abstract. A set U of unit vectors is selectively balancing if one can find two disjoint subsets
U+ and U−, not both empty, such that the Euclidean distance between the sum of U+ and the

sum of U− is smaller than 1. We prove that the minimum number of unit vectors that guarantee
a selectively balancing set in Rn is asymptotically 1

2
n logn.

A set of unit vectors U = {u1, . . . ,um} is said to be selectively balancing if there is a non-trivial
linear combination v =

∑
εiui with coefficients εi ∈ {−1, 0, 1} such that the Euclidean norm

‖v‖ < 1. In other words, U is selectively balancing if one can select two disjoint subsets U+ and
U−, not both empty, such that

‖
∑
U+

u−
∑
U−

u‖ < 1.

Note that the inequality must be strict for the problem to be nontrivial. Otherwise, one could
always balance U by choosing the coefficients to be zero for all but one unit vector.

The term “balancing” refers to the classical vector balancing problems, which typically try
to assign coefficients ±1 to vectors so that the signed sum has a small norm. Various norms
could be considered for balancing vectors, and different conditions can be imposed on the vectors;
see e.g. [Spe77,Spe81,BG81,Spe86,Ban93,Gia97,Ban98,Swa00]. The coefficient 0 is usually not
considered, despite its appearance in the powerful Partial Coloring Method (see [Bec81, Spe85]
and [Mat99, §4.5, 4.6]). In this note, we try to balance unit vectors with Euclidean norms, and
allow the sign to be 0. In other words, one could abandon some (not all) vectors, hence the term
“selectively”.

Let σ(n) be the minimum integer m such that any m unit vectors in Rn are selectively balancing.
Our main result is

Theorem.

σ(n) ∼ 1

2
n log n.

In other words, for any two constants c1 > 1/2 > c2, we have c1n log n > σ(n) > c2n log n for
sufficiently large n.

Remark. The initial motivation for our investigation is a seemingly unrelated topic: the dot product
representation of cube graphs. A dot product representation [FSTZ98] of a graph G = (V,E) is
a map ρ : V → Rn such that 〈ρ(u), ρ(v)〉 ≥ 1 if and only if uv ∈ E. It was conjectured [LC14]
that the (n+ 1)-cube has no dot product representation in Rn, but was disproved by the second
author [Che14]. Our construction could be modified to give dot product representations of
(cn log n)-cubes in Rn. See the remark at the end for the general idea.

For convenience, we take the base of the logarithm as 2. For two sets A,B ⊂ Rn, A+B denotes
the Minkowski sum, i.e. A+B = {a + b | a ∈ A,b ∈ B}. We will not distinguish a set consisting
of a single vector from the vector itself.

The proof of the theorem is presented in two propositions.

Proposition 1. Let c1 > 1/2 be a constant. Then for sufficiently large n, any set of c1n log n unit
vectors in Rn is selectively balancing.
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Figure 1. Proof of Proposition 1.

Proof. Let Q ⊂ Rn denote the unit cube [−1/2, 1/2]n, and Z be the zonotope generated by
U = {u1, . . . ,um}. That is,

Z =

{
m∑
i=1

λiui | 0 ≤ λi ≤ 1

}
.

In particular, Z contains all the binary combinations of U , i.e. linear combinations with coefficients
0 or 1.

Let v1 and v2 be two distinct binary linear combinations. If the Euclidean distance ‖v1−v2‖ < 1,
then v = v1 − v2 is a non-zero linear combination of U with coefficients −1, 0 or 1, and ‖v‖ < 1,
hence U is selectively balancing by definition. Our plan is to prove that there exist two distinct
binary combinations of U at Euclidean distance < 1 if m = c1n log n.

Let Z+ = Z +Q and Z++ = Z+ +Q. Consider the translated unit cubes {Q+ t | t ∈ Zn ∩Z+}.
They are contained in Z++ with disjoint interiors, and form a covering of Z. The number of the
cubes, which is the cardinality of Zn ∩ Z+, is bounded from above by the volume of Z++.

A zonotope can be dissected into parallelepipeds generated by linearly independent subsets of
its generator; see [She74, §5] and [BR15, § 9.2]. The volume of a parallelepiped generated by unit
vectors is at most 1. Since Z++ is (up to a translation) generated by m + 2n unit vectors, its
volume is at most (

m+ 2n

n

)
< (e(α+ 2))n,

where α = m/n and we have used Stirling’s formula. We then subdivide each unit cube into
(n+ 1)n/2 cubes of side length 1/

√
n+ 1, and estimate, very generously, at most (e(α+ 2)

√
n+ 1)n

cubes of side length 1/
√
n+ 1 with disjoint interiors. These cubes cover Z. Inside a cube of side

length 1/
√
n+ 1, the Euclidean distance between any two points is < 1.

By the pigeonhole principle and the discussion before, U must be selectively balancing if
2m > (e(α + 2)

√
n+ 1)n. If m = αn = c1n log n with c1 > 1/2, this condition is satisfied for

sufficiently large n. �

The proof is illustrated in Figure 1.
In order to better explain our construction for the second half of the theorem, we would like to

present an example first.

Example. In Figure 2 is an 5×5 integer lattice. We identify the 25 lattice points to the coordinates
of R25. Consider two types of unit vectors: the first are the basis vectors; the second are half of
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the sum of the four basis vectors corresponding to the neighbors of a lattice point. An example is
given for each type in Figure 2, with the radius of the circle proportional to the component of the
vector in the corresponding coordinate. There are 25 vectors of the first type, and 9 vectors of the
second type, hence 34 unit vectors in total.

Consider a non-trivial linear combination v of the 34 unit vectors with coefficients −1, 0 or 1. If
it only involves vectors of the first type, we have obviously ‖v‖ ≥ 1. If it only involves vectors
of the second type, one verifies that v has absolute value 1/2 in at least four coordinates, hence
again ‖v‖ ≥ 1. If both types are involved, the 1/2’s created by vectors of the second type won’t
be canceled by the integers created by basis vectors, as illustrated in Figure 2. Therefore v has
absolute value ≥ 1/2 in at least four coordinates, hence again ‖v‖ ≥ 1. We then conclude that
these vectors are not selectively balancing.

Figure 2. Construction of 34 unit vectors in R25 that are not selectively balancing.

Our construction is a generalization of the example.
We need the following lemma. Let C ⊂ Rd be a set of points in strictly convex position, i.e.

every point of C is a vertex of the convex hull Conv(C). Let T be a finite collection of translation
vectors. Then C + T is the union of translated copies of C. A point x ∈ C + T is lonely if there is
a unique t ∈ T such that x ∈ C + t.

Lemma. For each y ∈ C, there is a lonely point x = y + t.

Proof. Since C is strictly convex, there is a linear function f ∈ (Rd)∗ such that f(y) > f(y′) for any
y 6= y′ ∈ C. We then take any x ∈ C + T that maximizes f . By construction, x ∈ C + t for some
t ∈ T . We then have x = y+ t; otherwise, if x = y′+ t for some y′ 6= y, then f(y+ t) > f(y′+ t),
contradicting the maximality of x. Since the translation t = x− y is uniquely determined, x is a
lonely point. �

Construction. Assume that S ⊂ Zd contains at least 4k integer points with the same Euclidean
norm R, hence necessarily strictly convex. Let r = maxu∈S ‖u‖∞ and L > 2r. We now construct

a set U of (k + 1)(L− 2r)d unit vectors in RLd

that is not selectively balancing.

We identify the basis vectors of RLd

to the integer points in [1, L]d; the basis vector corresponding
to x ∈ [1, L]d is denoted by ex, and vx = 〈v, ex〉 denotes the component of v in the x-coordinate.

Let S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sk = S be subsets of S such that |Si| = 4i for 1 ≤ i ≤ k. A unit
vector in our set U is labeled by an integer point t ∈ [1 + r, L− r]d and an integer i ∈ [0, k], and is
defined by

ut,i = 2−i
∑
y∈Si

et+y.
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Note that, by assumption, [1 + r, L− r]d + S ⊆ [1, L]d, so U ⊂ RLd

. We now verify that U is not
selectively balancing.

Let v be a non-trivial linear combination of ut,i with coefficients εt,i ∈ {−1, 0, 1}.
For a fixed i ∈ [0, k], define vi =

∑
εt,iut,i and

Suppi(v) = {t ∈ [1 + r, L− r]d | εt,i 6= 0}.

In every coordinate x ∈ [1, L]d, the component (vi)x is an integer multiple of 2−i. By Lemma ,
for each y ∈ Si, Si + Suppi(v) has a lonely point x = y + t. Therefore, in at least 4i coordinates
x ∈ [1, L]d, we have (vi)x = ±2−i.

Define

j = max{i ∈ [0, k] | Suppi(v) 6= ∅},
so v = v0 + · · ·+ vj . For each i < j, (vi)x is a multiple of 2−i, hence a multiple of 2 × 2−j , in
every coordinate x ∈ [1, L]d. Since (vj)x = ±2−j in at least 4j coordinates, we have |vx| ≥ 2−j in
these coordinates. So ‖v‖ ≥ 1.

The second half of the theorem is proved by adjusting the parameters in the construction.

Proposition 2. Let c2 < 1/2 be a constant. Then for sufficiently large n, there are c2n log n unit
vectors in Rn that are not selectively balancing.

Proof. Let D = 2d. Consider the (2D + 1)d integer points in [−D,D]d. Their squared Euclidean
norms are at most dD2. By the pigeonhole principle, there is a set S ⊂ [−D,D]d consisting of

lattice points with the same Euclidean norm R ≤ D
√
d, whose cardinality

|S| ≥ (2D + 1)d − 1

dD2
> 4(d

2−d−log d)/2.

Note that r = maxu∈S ‖u‖∞ ≤ D. We have constructed m unit vectors in Rn that are not
selectively balancing, where n = Ld and

m > 1
2 (d2 − d− log d)(L− 2r)d

≥ 1
2 (d2 − d− log d)(L− 2D)d ∼ 1

2d
2(L− 2D)d.

For a constant λ > 1, we take L = bDλc = b2λdc, which is eventually bigger than 2D. Then

n ∼ 2λd
2

and log n ∼ λd2, hence

lim
d→∞

m

n log n
>

1

2λ
.

We conclude that, as long as c2 < 1/2λ, there are more than c2n log n unit vectors that are not
selectively balancing for sufficiently large integers of the form n = b2λdcd.

If n is sufficiently large, we can always find an integer d and a constant µ ∈ (
√
λ, λ) such that

b2µdcd ≤ n ≤ (b2µdc+ 1)d. Hence for any c2 < 1/2λ, we have σ(n) > c2n log n for sufficiently large
n. This finishes the proof since we can choose λ to be arbitrarily close to 1. �

Remark. We give credit to the anonymous referee for this choice of S, which helped improving
the proposition. In a preliminary version, we used another S, and proved for any c2 < 1/3e2 that
σ(n) > c2n log n for infinitely many n.

Remark. In the construction, we could also replace 2 by any integer p > 2 and, correspondingly, 4
by p2. In particular, if we take an odd integer p ≥ 5, we obtain a set of unit vectors that is strictly
not selectively balancing: a linear combination v of U with coefficients −1, 0 or 1 has Euclidean
norm 1 only if v ∈ ±U . Our current proof for this fact is however too long and does not fit into
this short note.

Note that m unit vectors in Rn that are strictly not selectively balancing imply a ball packing
in Rn whose tangency graph is a m-cube. Then we conclude the following by Proposition 5
of [KLMS11]: there is a constant c such that, for infinitely many n, the (cn log n)-cube admits a
dot product representation in Rn. This is actually the initial motivation of our investigation.
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